File size: 7,052 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv import ConfigDict
from mmcv.ops import nms

from ..builder import HEADS
from .guided_anchor_head import GuidedAnchorHead


@HEADS.register_module()
class GARPNHead(GuidedAnchorHead):
    """Guided-Anchor-based RPN head."""

    def __init__(self,
                 in_channels,
                 init_cfg=dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='conv_loc',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs):
        super(GARPNHead, self).__init__(
            1, in_channels, init_cfg=init_cfg, **kwargs)

    def _init_layers(self):
        """Initialize layers of the head."""
        self.rpn_conv = nn.Conv2d(
            self.in_channels, self.feat_channels, 3, padding=1)
        super(GARPNHead, self)._init_layers()

    def forward_single(self, x):
        """Forward feature of a single scale level."""

        x = self.rpn_conv(x)
        x = F.relu(x, inplace=True)
        (cls_score, bbox_pred, shape_pred,
         loc_pred) = super(GARPNHead, self).forward_single(x)
        return cls_score, bbox_pred, shape_pred, loc_pred

    def loss(self,
             cls_scores,
             bbox_preds,
             shape_preds,
             loc_preds,
             gt_bboxes,
             img_metas,
             gt_bboxes_ignore=None):
        losses = super(GARPNHead, self).loss(
            cls_scores,
            bbox_preds,
            shape_preds,
            loc_preds,
            gt_bboxes,
            None,
            img_metas,
            gt_bboxes_ignore=gt_bboxes_ignore)
        return dict(
            loss_rpn_cls=losses['loss_cls'],
            loss_rpn_bbox=losses['loss_bbox'],
            loss_anchor_shape=losses['loss_shape'],
            loss_anchor_loc=losses['loss_loc'])

    def _get_bboxes_single(self,
                           cls_scores,
                           bbox_preds,
                           mlvl_anchors,
                           mlvl_masks,
                           img_shape,
                           scale_factor,
                           cfg,
                           rescale=False):
        cfg = self.test_cfg if cfg is None else cfg

        cfg = copy.deepcopy(cfg)

        # deprecate arguments warning
        if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg:
            warnings.warn(
                'In rpn_proposal or test_cfg, '
                'nms_thr has been moved to a dict named nms as '
                'iou_threshold, max_num has been renamed as max_per_img, '
                'name of original arguments and the way to specify '
                'iou_threshold of NMS will be deprecated.')
        if 'nms' not in cfg:
            cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr))
        if 'max_num' in cfg:
            if 'max_per_img' in cfg:
                assert cfg.max_num == cfg.max_per_img, f'You ' \
                    f'set max_num and max_per_img at the same time, ' \
                    f'but get {cfg.max_num} ' \
                    f'and {cfg.max_per_img} respectively' \
                    'Please delete max_num which will be deprecated.'
            else:
                cfg.max_per_img = cfg.max_num
        if 'nms_thr' in cfg:
            assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set ' \
                f'iou_threshold in nms and ' \
                f'nms_thr at the same time, but get ' \
                f'{cfg.nms.iou_threshold} and {cfg.nms_thr}' \
                f' respectively. Please delete the ' \
                f'nms_thr which will be deprecated.'

        assert cfg.nms.get('type', 'nms') == 'nms', 'GARPNHead only support ' \
            'naive nms.'

        mlvl_proposals = []
        for idx in range(len(cls_scores)):
            rpn_cls_score = cls_scores[idx]
            rpn_bbox_pred = bbox_preds[idx]
            anchors = mlvl_anchors[idx]
            mask = mlvl_masks[idx]
            assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
            # if no location is kept, end.
            if mask.sum() == 0:
                continue
            rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
            if self.use_sigmoid_cls:
                rpn_cls_score = rpn_cls_score.reshape(-1)
                scores = rpn_cls_score.sigmoid()
            else:
                rpn_cls_score = rpn_cls_score.reshape(-1, 2)
                # remind that we set FG labels to [0, num_class-1]
                # since mmdet v2.0
                # BG cat_id: num_class
                scores = rpn_cls_score.softmax(dim=1)[:, :-1]
            # filter scores, bbox_pred w.r.t. mask.
            # anchors are filtered in get_anchors() beforehand.
            scores = scores[mask]
            rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1,
                                                                   4)[mask, :]
            if scores.dim() == 0:
                rpn_bbox_pred = rpn_bbox_pred.unsqueeze(0)
                anchors = anchors.unsqueeze(0)
                scores = scores.unsqueeze(0)
            # filter anchors, bbox_pred, scores w.r.t. scores
            if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre:
                _, topk_inds = scores.topk(cfg.nms_pre)
                rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
                anchors = anchors[topk_inds, :]
                scores = scores[topk_inds]
            # get proposals w.r.t. anchors and rpn_bbox_pred
            proposals = self.bbox_coder.decode(
                anchors, rpn_bbox_pred, max_shape=img_shape)
            # filter out too small bboxes
            if cfg.min_bbox_size >= 0:
                w = proposals[:, 2] - proposals[:, 0]
                h = proposals[:, 3] - proposals[:, 1]
                valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
                if not valid_mask.all():
                    proposals = proposals[valid_mask]
                    scores = scores[valid_mask]

            # NMS in current level
            proposals, _ = nms(proposals, scores, cfg.nms.iou_threshold)
            proposals = proposals[:cfg.nms_post, :]
            mlvl_proposals.append(proposals)
        proposals = torch.cat(mlvl_proposals, 0)
        if cfg.get('nms_across_levels', False):
            # NMS across multi levels
            proposals, _ = nms(proposals[:, :4], proposals[:, -1],
                               cfg.nms.iou_threshold)
            proposals = proposals[:cfg.max_per_img, :]
        else:
            scores = proposals[:, 4]
            num = min(cfg.max_per_img, proposals.shape[0])
            _, topk_inds = scores.topk(num)
            proposals = proposals[topk_inds, :]
        return proposals