Spaces:
Runtime error
Runtime error
File size: 31,361 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, auto_fp16, force_fp32
from mmdet.core import InstanceData, mask_matrix_nms, multi_apply
from mmdet.core.utils import center_of_mass, generate_coordinate
from mmdet.models.builder import HEADS
from mmdet.utils.misc import floordiv
from .solo_head import SOLOHead
class MaskFeatModule(BaseModule):
"""SOLOv2 mask feature map branch used in `SOLOv2: Dynamic and Fast
Instance Segmentation. <https://arxiv.org/pdf/2003.10152>`_
Args:
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels of the mask feature
map branch.
start_level (int): The starting feature map level from RPN that
will be used to predict the mask feature map.
end_level (int): The ending feature map level from rpn that
will be used to predict the mask feature map.
out_channels (int): Number of output channels of the mask feature
map branch. This is the channel count of the mask
feature map that to be dynamically convolved with the predicted
kernel.
mask_stride (int): Downsample factor of the mask feature map output.
Default: 4.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Config dict for normalization layer. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
feat_channels,
start_level,
end_level,
out_channels,
mask_stride=4,
conv_cfg=None,
norm_cfg=None,
init_cfg=[dict(type='Normal', layer='Conv2d', std=0.01)]):
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.feat_channels = feat_channels
self.start_level = start_level
self.end_level = end_level
self.mask_stride = mask_stride
assert start_level >= 0 and end_level >= start_level
self.out_channels = out_channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self._init_layers()
self.fp16_enabled = False
def _init_layers(self):
self.convs_all_levels = nn.ModuleList()
for i in range(self.start_level, self.end_level + 1):
convs_per_level = nn.Sequential()
if i == 0:
convs_per_level.add_module(
f'conv{i}',
ConvModule(
self.in_channels,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
inplace=False))
self.convs_all_levels.append(convs_per_level)
continue
for j in range(i):
if j == 0:
if i == self.end_level:
chn = self.in_channels + 2
else:
chn = self.in_channels
convs_per_level.add_module(
f'conv{j}',
ConvModule(
chn,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
inplace=False))
convs_per_level.add_module(
f'upsample{j}',
nn.Upsample(
scale_factor=2,
mode='bilinear',
align_corners=False))
continue
convs_per_level.add_module(
f'conv{j}',
ConvModule(
self.feat_channels,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
inplace=False))
convs_per_level.add_module(
f'upsample{j}',
nn.Upsample(
scale_factor=2, mode='bilinear', align_corners=False))
self.convs_all_levels.append(convs_per_level)
self.conv_pred = ConvModule(
self.feat_channels,
self.out_channels,
1,
padding=0,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg)
@auto_fp16()
def forward(self, feats):
inputs = feats[self.start_level:self.end_level + 1]
assert len(inputs) == (self.end_level - self.start_level + 1)
feature_add_all_level = self.convs_all_levels[0](inputs[0])
for i in range(1, len(inputs)):
input_p = inputs[i]
if i == len(inputs) - 1:
coord_feat = generate_coordinate(input_p.size(),
input_p.device)
input_p = torch.cat([input_p, coord_feat], 1)
# fix runtime error of "+=" inplace operation in PyTorch 1.10
feature_add_all_level = feature_add_all_level + \
self.convs_all_levels[i](input_p)
feature_pred = self.conv_pred(feature_add_all_level)
return feature_pred
@HEADS.register_module()
class SOLOV2Head(SOLOHead):
"""SOLOv2 mask head used in `SOLOv2: Dynamic and Fast Instance
Segmentation. <https://arxiv.org/pdf/2003.10152>`_
Args:
mask_feature_head (dict): Config of SOLOv2MaskFeatHead.
dynamic_conv_size (int): Dynamic Conv kernel size. Default: 1.
dcn_cfg (dict): Dcn conv configurations in kernel_convs and cls_conv.
default: None.
dcn_apply_to_all_conv (bool): Whether to use dcn in every layer of
kernel_convs and cls_convs, or only the last layer. It shall be set
`True` for the normal version of SOLOv2 and `False` for the
light-weight version. default: True.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
*args,
mask_feature_head,
dynamic_conv_size=1,
dcn_cfg=None,
dcn_apply_to_all_conv=True,
init_cfg=[
dict(type='Normal', layer='Conv2d', std=0.01),
dict(
type='Normal',
std=0.01,
bias_prob=0.01,
override=dict(name='conv_cls'))
],
**kwargs):
assert dcn_cfg is None or isinstance(dcn_cfg, dict)
self.dcn_cfg = dcn_cfg
self.with_dcn = dcn_cfg is not None
self.dcn_apply_to_all_conv = dcn_apply_to_all_conv
self.dynamic_conv_size = dynamic_conv_size
mask_out_channels = mask_feature_head.get('out_channels')
self.kernel_out_channels = \
mask_out_channels * self.dynamic_conv_size * self.dynamic_conv_size
super().__init__(*args, init_cfg=init_cfg, **kwargs)
# update the in_channels of mask_feature_head
if mask_feature_head.get('in_channels', None) is not None:
if mask_feature_head.in_channels != self.in_channels:
warnings.warn('The `in_channels` of SOLOv2MaskFeatHead and '
'SOLOv2Head should be same, changing '
'mask_feature_head.in_channels to '
f'{self.in_channels}')
mask_feature_head.update(in_channels=self.in_channels)
else:
mask_feature_head.update(in_channels=self.in_channels)
self.mask_feature_head = MaskFeatModule(**mask_feature_head)
self.mask_stride = self.mask_feature_head.mask_stride
self.fp16_enabled = False
def _init_layers(self):
self.cls_convs = nn.ModuleList()
self.kernel_convs = nn.ModuleList()
conv_cfg = None
for i in range(self.stacked_convs):
if self.with_dcn:
if self.dcn_apply_to_all_conv:
conv_cfg = self.dcn_cfg
elif i == self.stacked_convs - 1:
# light head
conv_cfg = self.dcn_cfg
chn = self.in_channels + 2 if i == 0 else self.feat_channels
self.kernel_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=self.norm_cfg,
bias=self.norm_cfg is None))
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=self.norm_cfg,
bias=self.norm_cfg is None))
self.conv_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.conv_kernel = nn.Conv2d(
self.feat_channels, self.kernel_out_channels, 3, padding=1)
@auto_fp16()
def forward(self, feats):
assert len(feats) == self.num_levels
mask_feats = self.mask_feature_head(feats)
feats = self.resize_feats(feats)
mlvl_kernel_preds = []
mlvl_cls_preds = []
for i in range(self.num_levels):
ins_kernel_feat = feats[i]
# ins branch
# concat coord
coord_feat = generate_coordinate(ins_kernel_feat.size(),
ins_kernel_feat.device)
ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1)
# kernel branch
kernel_feat = ins_kernel_feat
kernel_feat = F.interpolate(
kernel_feat,
size=self.num_grids[i],
mode='bilinear',
align_corners=False)
cate_feat = kernel_feat[:, :-2, :, :]
kernel_feat = kernel_feat.contiguous()
for i, kernel_conv in enumerate(self.kernel_convs):
kernel_feat = kernel_conv(kernel_feat)
kernel_pred = self.conv_kernel(kernel_feat)
# cate branch
cate_feat = cate_feat.contiguous()
for i, cls_conv in enumerate(self.cls_convs):
cate_feat = cls_conv(cate_feat)
cate_pred = self.conv_cls(cate_feat)
mlvl_kernel_preds.append(kernel_pred)
mlvl_cls_preds.append(cate_pred)
return mlvl_kernel_preds, mlvl_cls_preds, mask_feats
def _get_targets_single(self,
gt_bboxes,
gt_labels,
gt_masks,
featmap_size=None):
"""Compute targets for predictions of single image.
Args:
gt_bboxes (Tensor): Ground truth bbox of each instance,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth label of each instance,
shape (num_gts,).
gt_masks (Tensor): Ground truth mask of each instance,
shape (num_gts, h, w).
featmap_sizes (:obj:`torch.size`): Size of UNified mask
feature map used to generate instance segmentation
masks by dynamic convolution, each element means
(feat_h, feat_w). Default: None.
Returns:
Tuple: Usually returns a tuple containing targets for predictions.
- mlvl_pos_mask_targets (list[Tensor]): Each element represent
the binary mask targets for positive points in this
level, has shape (num_pos, out_h, out_w).
- mlvl_labels (list[Tensor]): Each element is
classification labels for all
points in this level, has shape
(num_grid, num_grid).
- mlvl_pos_masks (list[Tensor]): Each element is
a `BoolTensor` to represent whether the
corresponding point in single level
is positive, has shape (num_grid **2).
- mlvl_pos_indexes (list[list]): Each element
in the list contains the positive index in
corresponding level, has shape (num_pos).
"""
device = gt_labels.device
gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
(gt_bboxes[:, 3] - gt_bboxes[:, 1]))
mlvl_pos_mask_targets = []
mlvl_pos_indexes = []
mlvl_labels = []
mlvl_pos_masks = []
for (lower_bound, upper_bound), num_grid \
in zip(self.scale_ranges, self.num_grids):
mask_target = []
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
pos_index = []
labels = torch.zeros([num_grid, num_grid],
dtype=torch.int64,
device=device) + self.num_classes
pos_mask = torch.zeros([num_grid**2],
dtype=torch.bool,
device=device)
gt_inds = ((gt_areas >= lower_bound) &
(gt_areas <= upper_bound)).nonzero().flatten()
if len(gt_inds) == 0:
mlvl_pos_mask_targets.append(
torch.zeros([0, featmap_size[0], featmap_size[1]],
dtype=torch.uint8,
device=device))
mlvl_labels.append(labels)
mlvl_pos_masks.append(pos_mask)
mlvl_pos_indexes.append([])
continue
hit_gt_bboxes = gt_bboxes[gt_inds]
hit_gt_labels = gt_labels[gt_inds]
hit_gt_masks = gt_masks[gt_inds, ...]
pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] -
hit_gt_bboxes[:, 0]) * self.pos_scale
pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] -
hit_gt_bboxes[:, 1]) * self.pos_scale
# Make sure hit_gt_masks has a value
valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0
for gt_mask, gt_label, pos_h_range, pos_w_range, \
valid_mask_flag in \
zip(hit_gt_masks, hit_gt_labels, pos_h_ranges,
pos_w_ranges, valid_mask_flags):
if not valid_mask_flag:
continue
upsampled_size = (featmap_size[0] * self.mask_stride,
featmap_size[1] * self.mask_stride)
center_h, center_w = center_of_mass(gt_mask)
coord_w = int(
floordiv((center_w / upsampled_size[1]), (1. / num_grid),
rounding_mode='trunc'))
coord_h = int(
floordiv((center_h / upsampled_size[0]), (1. / num_grid),
rounding_mode='trunc'))
# left, top, right, down
top_box = max(
0,
int(
floordiv(
(center_h - pos_h_range) / upsampled_size[0],
(1. / num_grid),
rounding_mode='trunc')))
down_box = min(
num_grid - 1,
int(
floordiv(
(center_h + pos_h_range) / upsampled_size[0],
(1. / num_grid),
rounding_mode='trunc')))
left_box = max(
0,
int(
floordiv(
(center_w - pos_w_range) / upsampled_size[1],
(1. / num_grid),
rounding_mode='trunc')))
right_box = min(
num_grid - 1,
int(
floordiv(
(center_w + pos_w_range) / upsampled_size[1],
(1. / num_grid),
rounding_mode='trunc')))
top = max(top_box, coord_h - 1)
down = min(down_box, coord_h + 1)
left = max(coord_w - 1, left_box)
right = min(right_box, coord_w + 1)
labels[top:(down + 1), left:(right + 1)] = gt_label
# ins
gt_mask = np.uint8(gt_mask.cpu().numpy())
# Follow the original implementation, F.interpolate is
# different from cv2 and opencv
gt_mask = mmcv.imrescale(gt_mask, scale=1. / self.mask_stride)
gt_mask = torch.from_numpy(gt_mask).to(device=device)
for i in range(top, down + 1):
for j in range(left, right + 1):
index = int(i * num_grid + j)
this_mask_target = torch.zeros(
[featmap_size[0], featmap_size[1]],
dtype=torch.uint8,
device=device)
this_mask_target[:gt_mask.shape[0], :gt_mask.
shape[1]] = gt_mask
mask_target.append(this_mask_target)
pos_mask[index] = True
pos_index.append(index)
if len(mask_target) == 0:
mask_target = torch.zeros(
[0, featmap_size[0], featmap_size[1]],
dtype=torch.uint8,
device=device)
else:
mask_target = torch.stack(mask_target, 0)
mlvl_pos_mask_targets.append(mask_target)
mlvl_labels.append(labels)
mlvl_pos_masks.append(pos_mask)
mlvl_pos_indexes.append(pos_index)
return (mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks,
mlvl_pos_indexes)
@force_fp32(apply_to=('mlvl_kernel_preds', 'mlvl_cls_preds', 'mask_feats'))
def loss(self,
mlvl_kernel_preds,
mlvl_cls_preds,
mask_feats,
gt_labels,
gt_masks,
img_metas,
gt_bboxes=None,
**kwargs):
"""Calculate the loss of total batch.
Args:
mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
prediction. The kernel is used to generate instance
segmentation masks by dynamic convolution. Each element in the
list has shape
(batch_size, kernel_out_channels, num_grids, num_grids).
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element
in the list has shape
(batch_size, num_classes, num_grids, num_grids).
mask_feats (Tensor): Unified mask feature map used to generate
instance segmentation masks by dynamic convolution. Has shape
(batch_size, mask_out_channels, h, w).
gt_labels (list[Tensor]): Labels of multiple images.
gt_masks (list[Tensor]): Ground truth masks of multiple images.
Each has shape (num_instances, h, w).
img_metas (list[dict]): Meta information of multiple images.
gt_bboxes (list[Tensor]): Ground truth bboxes of multiple
images. Default: None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_size = mask_feats.size()[-2:]
pos_mask_targets, labels, pos_masks, pos_indexes = multi_apply(
self._get_targets_single,
gt_bboxes,
gt_labels,
gt_masks,
featmap_size=featmap_size)
mlvl_mask_targets = [
torch.cat(lvl_mask_targets, 0)
for lvl_mask_targets in zip(*pos_mask_targets)
]
mlvl_pos_kernel_preds = []
for lvl_kernel_preds, lvl_pos_indexes in zip(mlvl_kernel_preds,
zip(*pos_indexes)):
lvl_pos_kernel_preds = []
for img_lvl_kernel_preds, img_lvl_pos_indexes in zip(
lvl_kernel_preds, lvl_pos_indexes):
img_lvl_pos_kernel_preds = img_lvl_kernel_preds.view(
img_lvl_kernel_preds.shape[0], -1)[:, img_lvl_pos_indexes]
lvl_pos_kernel_preds.append(img_lvl_pos_kernel_preds)
mlvl_pos_kernel_preds.append(lvl_pos_kernel_preds)
# make multilevel mlvl_mask_pred
mlvl_mask_preds = []
for lvl_pos_kernel_preds in mlvl_pos_kernel_preds:
lvl_mask_preds = []
for img_id, img_lvl_pos_kernel_pred in enumerate(
lvl_pos_kernel_preds):
if img_lvl_pos_kernel_pred.size()[-1] == 0:
continue
img_mask_feats = mask_feats[[img_id]]
h, w = img_mask_feats.shape[-2:]
num_kernel = img_lvl_pos_kernel_pred.shape[1]
img_lvl_mask_pred = F.conv2d(
img_mask_feats,
img_lvl_pos_kernel_pred.permute(1, 0).view(
num_kernel, -1, self.dynamic_conv_size,
self.dynamic_conv_size),
stride=1).view(-1, h, w)
lvl_mask_preds.append(img_lvl_mask_pred)
if len(lvl_mask_preds) == 0:
lvl_mask_preds = None
else:
lvl_mask_preds = torch.cat(lvl_mask_preds, 0)
mlvl_mask_preds.append(lvl_mask_preds)
# dice loss
num_pos = 0
for img_pos_masks in pos_masks:
for lvl_img_pos_masks in img_pos_masks:
num_pos += lvl_img_pos_masks.count_nonzero()
loss_mask = []
for lvl_mask_preds, lvl_mask_targets in zip(mlvl_mask_preds,
mlvl_mask_targets):
if lvl_mask_preds is None:
continue
loss_mask.append(
self.loss_mask(
lvl_mask_preds,
lvl_mask_targets,
reduction_override='none'))
if num_pos > 0:
loss_mask = torch.cat(loss_mask).sum() / num_pos
else:
loss_mask = mask_feats.sum() * 0
# cate
flatten_labels = [
torch.cat(
[img_lvl_labels.flatten() for img_lvl_labels in lvl_labels])
for lvl_labels in zip(*labels)
]
flatten_labels = torch.cat(flatten_labels)
flatten_cls_preds = [
lvl_cls_preds.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
for lvl_cls_preds in mlvl_cls_preds
]
flatten_cls_preds = torch.cat(flatten_cls_preds)
loss_cls = self.loss_cls(
flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1)
return dict(loss_mask=loss_mask, loss_cls=loss_cls)
@force_fp32(
apply_to=('mlvl_kernel_preds', 'mlvl_cls_scores', 'mask_feats'))
def get_results(self, mlvl_kernel_preds, mlvl_cls_scores, mask_feats,
img_metas, **kwargs):
"""Get multi-image mask results.
Args:
mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
prediction. The kernel is used to generate instance
segmentation masks by dynamic convolution. Each element in the
list has shape
(batch_size, kernel_out_channels, num_grids, num_grids).
mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element
in the list has shape
(batch_size, num_classes, num_grids, num_grids).
mask_feats (Tensor): Unified mask feature map used to generate
instance segmentation masks by dynamic convolution. Has shape
(batch_size, mask_out_channels, h, w).
img_metas (list[dict]): Meta information of all images.
Returns:
list[:obj:`InstanceData`]: Processed results of multiple
images.Each :obj:`InstanceData` usually contains
following keys.
- scores (Tensor): Classification scores, has shape
(num_instance,).
- labels (Tensor): Has shape (num_instances,).
- masks (Tensor): Processed mask results, has
shape (num_instances, h, w).
"""
num_levels = len(mlvl_cls_scores)
assert len(mlvl_kernel_preds) == len(mlvl_cls_scores)
for lvl in range(num_levels):
cls_scores = mlvl_cls_scores[lvl]
cls_scores = cls_scores.sigmoid()
local_max = F.max_pool2d(cls_scores, 2, stride=1, padding=1)
keep_mask = local_max[:, :, :-1, :-1] == cls_scores
cls_scores = cls_scores * keep_mask
mlvl_cls_scores[lvl] = cls_scores.permute(0, 2, 3, 1)
result_list = []
for img_id in range(len(img_metas)):
img_cls_pred = [
mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels)
for lvl in range(num_levels)
]
img_mask_feats = mask_feats[[img_id]]
img_kernel_pred = [
mlvl_kernel_preds[lvl][img_id].permute(1, 2, 0).view(
-1, self.kernel_out_channels) for lvl in range(num_levels)
]
img_cls_pred = torch.cat(img_cls_pred, dim=0)
img_kernel_pred = torch.cat(img_kernel_pred, dim=0)
result = self._get_results_single(
img_kernel_pred,
img_cls_pred,
img_mask_feats,
img_meta=img_metas[img_id])
result_list.append(result)
return result_list
def _get_results_single(self,
kernel_preds,
cls_scores,
mask_feats,
img_meta,
cfg=None):
"""Get processed mask related results of single image.
Args:
kernel_preds (Tensor): Dynamic kernel prediction of all points
in single image, has shape
(num_points, kernel_out_channels).
cls_scores (Tensor): Classification score of all points
in single image, has shape (num_points, num_classes).
mask_preds (Tensor): Mask prediction of all points in
single image, has shape (num_points, feat_h, feat_w).
img_meta (dict): Meta information of corresponding image.
cfg (dict, optional): Config used in test phase.
Default: None.
Returns:
:obj:`InstanceData`: Processed results of single image.
it usually contains following keys.
- scores (Tensor): Classification scores, has shape
(num_instance,).
- labels (Tensor): Has shape (num_instances,).
- masks (Tensor): Processed mask results, has
shape (num_instances, h, w).
"""
def empty_results(results, cls_scores):
"""Generate a empty results."""
results.scores = cls_scores.new_ones(0)
results.masks = cls_scores.new_zeros(0, *results.ori_shape[:2])
results.labels = cls_scores.new_ones(0)
return results
cfg = self.test_cfg if cfg is None else cfg
assert len(kernel_preds) == len(cls_scores)
results = InstanceData(img_meta)
featmap_size = mask_feats.size()[-2:]
img_shape = results.img_shape
ori_shape = results.ori_shape
# overall info
h, w, _ = img_shape
upsampled_size = (featmap_size[0] * self.mask_stride,
featmap_size[1] * self.mask_stride)
# process.
score_mask = (cls_scores > cfg.score_thr)
cls_scores = cls_scores[score_mask]
if len(cls_scores) == 0:
return empty_results(results, cls_scores)
# cate_labels & kernel_preds
inds = score_mask.nonzero()
cls_labels = inds[:, 1]
kernel_preds = kernel_preds[inds[:, 0]]
# trans vector.
lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0)
strides = kernel_preds.new_ones(lvl_interval[-1])
strides[:lvl_interval[0]] *= self.strides[0]
for lvl in range(1, self.num_levels):
strides[lvl_interval[lvl -
1]:lvl_interval[lvl]] *= self.strides[lvl]
strides = strides[inds[:, 0]]
# mask encoding.
kernel_preds = kernel_preds.view(
kernel_preds.size(0), -1, self.dynamic_conv_size,
self.dynamic_conv_size)
mask_preds = F.conv2d(
mask_feats, kernel_preds, stride=1).squeeze(0).sigmoid()
# mask.
masks = mask_preds > cfg.mask_thr
sum_masks = masks.sum((1, 2)).float()
keep = sum_masks > strides
if keep.sum() == 0:
return empty_results(results, cls_scores)
masks = masks[keep]
mask_preds = mask_preds[keep]
sum_masks = sum_masks[keep]
cls_scores = cls_scores[keep]
cls_labels = cls_labels[keep]
# maskness.
mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks
cls_scores *= mask_scores
scores, labels, _, keep_inds = mask_matrix_nms(
masks,
cls_labels,
cls_scores,
mask_area=sum_masks,
nms_pre=cfg.nms_pre,
max_num=cfg.max_per_img,
kernel=cfg.kernel,
sigma=cfg.sigma,
filter_thr=cfg.filter_thr)
mask_preds = mask_preds[keep_inds]
mask_preds = F.interpolate(
mask_preds.unsqueeze(0),
size=upsampled_size,
mode='bilinear',
align_corners=False)[:, :, :h, :w]
mask_preds = F.interpolate(
mask_preds,
size=ori_shape[:2],
mode='bilinear',
align_corners=False).squeeze(0)
masks = mask_preds > cfg.mask_thr
results.masks = masks
results.labels = labels
results.scores = scores
return results
|