Spaces:
Runtime error
Runtime error
File size: 43,474 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList, force_fp32
from mmdet.core import build_sampler, fast_nms, images_to_levels, multi_apply
from mmdet.core.utils import select_single_mlvl
from ..builder import HEADS, build_loss
from .anchor_head import AnchorHead
@HEADS.register_module()
class YOLACTHead(AnchorHead):
"""YOLACT box head used in https://arxiv.org/abs/1904.02689.
Note that YOLACT head is a light version of RetinaNet head.
Four differences are described as follows:
1. YOLACT box head has three-times fewer anchors.
2. YOLACT box head shares the convs for box and cls branches.
3. YOLACT box head uses OHEM instead of Focal loss.
4. YOLACT box head predicts a set of mask coefficients for each box.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
anchor_generator (dict): Config dict for anchor generator
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
num_head_convs (int): Number of the conv layers shared by
box and cls branches.
num_protos (int): Number of the mask coefficients.
use_ohem (bool): If true, ``loss_single_OHEM`` will be used for
cls loss calculation. If false, ``loss_single`` will be used.
conv_cfg (dict): Dictionary to construct and config conv layer.
norm_cfg (dict): Dictionary to construct and config norm layer.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
num_classes,
in_channels,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=3,
scales_per_octave=1,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
reduction='none',
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0, loss_weight=1.5),
num_head_convs=1,
num_protos=32,
use_ohem=True,
conv_cfg=None,
norm_cfg=None,
init_cfg=dict(
type='Xavier',
distribution='uniform',
bias=0,
layer='Conv2d'),
**kwargs):
self.num_head_convs = num_head_convs
self.num_protos = num_protos
self.use_ohem = use_ohem
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
super(YOLACTHead, self).__init__(
num_classes,
in_channels,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
anchor_generator=anchor_generator,
init_cfg=init_cfg,
**kwargs)
if self.use_ohem:
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.sampling = False
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.head_convs = ModuleList()
for i in range(self.num_head_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.head_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
3,
padding=1)
self.conv_reg = nn.Conv2d(
self.feat_channels, self.num_base_priors * 4, 3, padding=1)
self.conv_coeff = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.num_protos,
3,
padding=1)
def forward_single(self, x):
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
Returns:
tuple:
cls_score (Tensor): Cls scores for a single scale level \
the channels number is num_anchors * num_classes.
bbox_pred (Tensor): Box energies / deltas for a single scale \
level, the channels number is num_anchors * 4.
coeff_pred (Tensor): Mask coefficients for a single scale \
level, the channels number is num_anchors * num_protos.
"""
for head_conv in self.head_convs:
x = head_conv(x)
cls_score = self.conv_cls(x)
bbox_pred = self.conv_reg(x)
coeff_pred = self.conv_coeff(x).tanh()
return cls_score, bbox_pred, coeff_pred
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""A combination of the func:``AnchorHead.loss`` and
func:``SSDHead.loss``.
When ``self.use_ohem == True``, it functions like ``SSDHead.loss``,
otherwise, it follows ``AnchorHead.loss``. Besides, it additionally
returns ``sampling_results``.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): Class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
boxes can be ignored when computing the loss. Default: None
Returns:
tuple:
dict[str, Tensor]: A dictionary of loss components.
List[:obj:``SamplingResult``]: Sampler results for each image.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels,
unmap_outputs=not self.use_ohem,
return_sampling_results=True)
if cls_reg_targets is None:
return None
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg, sampling_results) = cls_reg_targets
if self.use_ohem:
num_images = len(img_metas)
all_cls_scores = torch.cat([
s.permute(0, 2, 3, 1).reshape(
num_images, -1, self.cls_out_channels) for s in cls_scores
], 1)
all_labels = torch.cat(labels_list, -1).view(num_images, -1)
all_label_weights = torch.cat(label_weights_list,
-1).view(num_images, -1)
all_bbox_preds = torch.cat([
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
for b in bbox_preds
], -2)
all_bbox_targets = torch.cat(bbox_targets_list,
-2).view(num_images, -1, 4)
all_bbox_weights = torch.cat(bbox_weights_list,
-2).view(num_images, -1, 4)
# concat all level anchors to a single tensor
all_anchors = []
for i in range(num_images):
all_anchors.append(torch.cat(anchor_list[i]))
# check NaN and Inf
assert torch.isfinite(all_cls_scores).all().item(), \
'classification scores become infinite or NaN!'
assert torch.isfinite(all_bbox_preds).all().item(), \
'bbox predications become infinite or NaN!'
losses_cls, losses_bbox = multi_apply(
self.loss_single_OHEM,
all_cls_scores,
all_bbox_preds,
all_anchors,
all_labels,
all_label_weights,
all_bbox_targets,
all_bbox_weights,
num_total_samples=num_total_pos)
else:
num_total_samples = (
num_total_pos +
num_total_neg if self.sampling else num_total_pos)
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# concat all level anchors and flags to a single tensor
concat_anchor_list = []
for i in range(len(anchor_list)):
concat_anchor_list.append(torch.cat(anchor_list[i]))
all_anchor_list = images_to_levels(concat_anchor_list,
num_level_anchors)
losses_cls, losses_bbox = multi_apply(
self.loss_single,
cls_scores,
bbox_preds,
all_anchor_list,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
num_total_samples=num_total_samples)
return dict(
loss_cls=losses_cls, loss_bbox=losses_bbox), sampling_results
def loss_single_OHEM(self, cls_score, bbox_pred, anchors, labels,
label_weights, bbox_targets, bbox_weights,
num_total_samples):
""""See func:``SSDHead.loss``."""
loss_cls_all = self.loss_cls(cls_score, labels, label_weights)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero(
as_tuple=False).reshape(-1)
neg_inds = (labels == self.num_classes).nonzero(
as_tuple=False).view(-1)
num_pos_samples = pos_inds.size(0)
if num_pos_samples == 0:
num_neg_samples = neg_inds.size(0)
else:
num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples
if num_neg_samples > neg_inds.size(0):
num_neg_samples = neg_inds.size(0)
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
loss_cls_pos = loss_cls_all[pos_inds].sum()
loss_cls_neg = topk_loss_cls_neg.sum()
loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
loss_bbox = self.loss_bbox(
bbox_pred,
bbox_targets,
bbox_weights,
avg_factor=num_total_samples)
return loss_cls[None], loss_bbox
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'coeff_preds'))
def get_bboxes(self,
cls_scores,
bbox_preds,
coeff_preds,
img_metas,
cfg=None,
rescale=False):
""""Similar to func:``AnchorHead.get_bboxes``, but additionally
processes coeff_preds.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
with shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
coeff_preds (list[Tensor]): Mask coefficients for each scale
level with shape (N, num_anchors * num_protos, H, W)
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
cfg (mmcv.Config | None): Test / postprocessing configuration,
if None, test_cfg would be used
rescale (bool): If True, return boxes in original image space.
Default: False.
Returns:
list[tuple[Tensor, Tensor, Tensor]]: Each item in result_list is
a 3-tuple. The first item is an (n, 5) tensor, where the
first 4 columns are bounding box positions
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score
between 0 and 1. The second item is an (n,) tensor where each
item is the predicted class label of the corresponding box.
The third item is an (n, num_protos) tensor where each item
is the predicted mask coefficients of instance inside the
corresponding box.
"""
assert len(cls_scores) == len(bbox_preds)
num_levels = len(cls_scores)
device = cls_scores[0].device
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
mlvl_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device)
det_bboxes = []
det_labels = []
det_coeffs = []
for img_id in range(len(img_metas)):
cls_score_list = select_single_mlvl(cls_scores, img_id)
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
coeff_pred_list = select_single_mlvl(coeff_preds, img_id)
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
bbox_res = self._get_bboxes_single(cls_score_list, bbox_pred_list,
coeff_pred_list, mlvl_anchors,
img_shape, scale_factor, cfg,
rescale)
det_bboxes.append(bbox_res[0])
det_labels.append(bbox_res[1])
det_coeffs.append(bbox_res[2])
return det_bboxes, det_labels, det_coeffs
def _get_bboxes_single(self,
cls_score_list,
bbox_pred_list,
coeff_preds_list,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False):
""""Similar to func:``AnchorHead._get_bboxes_single``, but additionally
processes coeff_preds_list and uses fast NMS instead of traditional
NMS.
Args:
cls_score_list (list[Tensor]): Box scores for a single scale level
Has shape (num_anchors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas for a single
scale level with shape (num_anchors * 4, H, W).
coeff_preds_list (list[Tensor]): Mask coefficients for a single
scale level with shape (num_anchors * num_protos, H, W).
mlvl_anchors (list[Tensor]): Box reference for a single scale level
with shape (num_total_anchors, 4).
img_shape (tuple[int]): Shape of the input image,
(height, width, 3).
scale_factor (ndarray): Scale factor of the image arange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Returns:
tuple[Tensor, Tensor, Tensor]: The first item is an (n, 5) tensor,
where the first 4 columns are bounding box positions
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score between
0 and 1. The second item is an (n,) tensor where each item is
the predicted class label of the corresponding box. The third
item is an (n, num_protos) tensor where each item is the
predicted mask coefficients of instance inside the
corresponding box.
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_coeffs = []
for cls_score, bbox_pred, coeff_pred, anchors in \
zip(cls_score_list, bbox_pred_list,
coeff_preds_list, mlvl_anchors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
coeff_pred = coeff_pred.permute(1, 2,
0).reshape(-1, self.num_protos)
if 0 < nms_pre < scores.shape[0]:
# Get maximum scores for foreground classes.
if self.use_sigmoid_cls:
max_scores, _ = scores.max(dim=1)
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
max_scores, _ = scores[:, :-1].max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
coeff_pred = coeff_pred[topk_inds, :]
bboxes = self.bbox_coder.decode(
anchors, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_coeffs.append(coeff_pred)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
mlvl_coeffs = torch.cat(mlvl_coeffs)
if self.use_sigmoid_cls:
# Add a dummy background class to the backend when using sigmoid
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
det_bboxes, det_labels, det_coeffs = fast_nms(mlvl_bboxes, mlvl_scores,
mlvl_coeffs,
cfg.score_thr,
cfg.iou_thr, cfg.top_k,
cfg.max_per_img)
return det_bboxes, det_labels, det_coeffs
@HEADS.register_module()
class YOLACTSegmHead(BaseModule):
"""YOLACT segmentation head used in https://arxiv.org/abs/1904.02689.
Apply a semantic segmentation loss on feature space using layers that are
only evaluated during training to increase performance with no speed
penalty.
Args:
in_channels (int): Number of channels in the input feature map.
num_classes (int): Number of categories excluding the background
category.
loss_segm (dict): Config of semantic segmentation loss.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
num_classes,
in_channels=256,
loss_segm=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
init_cfg=dict(
type='Xavier',
distribution='uniform',
override=dict(name='segm_conv'))):
super(YOLACTSegmHead, self).__init__(init_cfg)
self.in_channels = in_channels
self.num_classes = num_classes
self.loss_segm = build_loss(loss_segm)
self._init_layers()
self.fp16_enabled = False
def _init_layers(self):
"""Initialize layers of the head."""
self.segm_conv = nn.Conv2d(
self.in_channels, self.num_classes, kernel_size=1)
def forward(self, x):
"""Forward feature from the upstream network.
Args:
x (Tensor): Feature from the upstream network, which is
a 4D-tensor.
Returns:
Tensor: Predicted semantic segmentation map with shape
(N, num_classes, H, W).
"""
return self.segm_conv(x)
@force_fp32(apply_to=('segm_pred', ))
def loss(self, segm_pred, gt_masks, gt_labels):
"""Compute loss of the head.
Args:
segm_pred (list[Tensor]): Predicted semantic segmentation map
with shape (N, num_classes, H, W).
gt_masks (list[Tensor]): Ground truth masks for each image with
the same shape of the input image.
gt_labels (list[Tensor]): Class indices corresponding to each box.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
loss_segm = []
num_imgs, num_classes, mask_h, mask_w = segm_pred.size()
for idx in range(num_imgs):
cur_segm_pred = segm_pred[idx]
cur_gt_masks = gt_masks[idx].float()
cur_gt_labels = gt_labels[idx]
segm_targets = self.get_targets(cur_segm_pred, cur_gt_masks,
cur_gt_labels)
if segm_targets is None:
loss = self.loss_segm(cur_segm_pred,
torch.zeros_like(cur_segm_pred),
torch.zeros_like(cur_segm_pred))
else:
loss = self.loss_segm(
cur_segm_pred,
segm_targets,
avg_factor=num_imgs * mask_h * mask_w)
loss_segm.append(loss)
return dict(loss_segm=loss_segm)
def get_targets(self, segm_pred, gt_masks, gt_labels):
"""Compute semantic segmentation targets for each image.
Args:
segm_pred (Tensor): Predicted semantic segmentation map
with shape (num_classes, H, W).
gt_masks (Tensor): Ground truth masks for each image with
the same shape of the input image.
gt_labels (Tensor): Class indices corresponding to each box.
Returns:
Tensor: Semantic segmentation targets with shape
(num_classes, H, W).
"""
if gt_masks.size(0) == 0:
return None
num_classes, mask_h, mask_w = segm_pred.size()
with torch.no_grad():
downsampled_masks = F.interpolate(
gt_masks.unsqueeze(0), (mask_h, mask_w),
mode='bilinear',
align_corners=False).squeeze(0)
downsampled_masks = downsampled_masks.gt(0.5).float()
segm_targets = torch.zeros_like(segm_pred, requires_grad=False)
for obj_idx in range(downsampled_masks.size(0)):
segm_targets[gt_labels[obj_idx] - 1] = torch.max(
segm_targets[gt_labels[obj_idx] - 1],
downsampled_masks[obj_idx])
return segm_targets
def simple_test(self, feats, img_metas, rescale=False):
"""Test function without test-time augmentation."""
raise NotImplementedError(
'simple_test of YOLACTSegmHead is not implemented '
'because this head is only evaluated during training')
@HEADS.register_module()
class YOLACTProtonet(BaseModule):
"""YOLACT mask head used in https://arxiv.org/abs/1904.02689.
This head outputs the mask prototypes for YOLACT.
Args:
in_channels (int): Number of channels in the input feature map.
proto_channels (tuple[int]): Output channels of protonet convs.
proto_kernel_sizes (tuple[int]): Kernel sizes of protonet convs.
include_last_relu (Bool): If keep the last relu of protonet.
num_protos (int): Number of prototypes.
num_classes (int): Number of categories excluding the background
category.
loss_mask_weight (float): Reweight the mask loss by this factor.
max_masks_to_train (int): Maximum number of masks to train for
each image.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
num_classes,
in_channels=256,
proto_channels=(256, 256, 256, None, 256, 32),
proto_kernel_sizes=(3, 3, 3, -2, 3, 1),
include_last_relu=True,
num_protos=32,
loss_mask_weight=1.0,
max_masks_to_train=100,
init_cfg=dict(
type='Xavier',
distribution='uniform',
override=dict(name='protonet'))):
super(YOLACTProtonet, self).__init__(init_cfg)
self.in_channels = in_channels
self.proto_channels = proto_channels
self.proto_kernel_sizes = proto_kernel_sizes
self.include_last_relu = include_last_relu
self.protonet = self._init_layers()
self.loss_mask_weight = loss_mask_weight
self.num_protos = num_protos
self.num_classes = num_classes
self.max_masks_to_train = max_masks_to_train
self.fp16_enabled = False
def _init_layers(self):
"""A helper function to take a config setting and turn it into a
network."""
# Possible patterns:
# ( 256, 3) -> conv
# ( 256,-2) -> deconv
# (None,-2) -> bilinear interpolate
in_channels = self.in_channels
protonets = ModuleList()
for num_channels, kernel_size in zip(self.proto_channels,
self.proto_kernel_sizes):
if kernel_size > 0:
layer = nn.Conv2d(
in_channels,
num_channels,
kernel_size,
padding=kernel_size // 2)
else:
if num_channels is None:
layer = InterpolateModule(
scale_factor=-kernel_size,
mode='bilinear',
align_corners=False)
else:
layer = nn.ConvTranspose2d(
in_channels,
num_channels,
-kernel_size,
padding=kernel_size // 2)
protonets.append(layer)
protonets.append(nn.ReLU(inplace=True))
in_channels = num_channels if num_channels is not None \
else in_channels
if not self.include_last_relu:
protonets = protonets[:-1]
return nn.Sequential(*protonets)
def forward_dummy(self, x):
prototypes = self.protonet(x)
return prototypes
def forward(self, x, coeff_pred, bboxes, img_meta, sampling_results=None):
"""Forward feature from the upstream network to get prototypes and
linearly combine the prototypes, using masks coefficients, into
instance masks. Finally, crop the instance masks with given bboxes.
Args:
x (Tensor): Feature from the upstream network, which is
a 4D-tensor.
coeff_pred (list[Tensor]): Mask coefficients for each scale
level with shape (N, num_anchors * num_protos, H, W).
bboxes (list[Tensor]): Box used for cropping with shape
(N, num_anchors * 4, H, W). During training, they are
ground truth boxes. During testing, they are predicted
boxes.
img_meta (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
sampling_results (List[:obj:``SamplingResult``]): Sampler results
for each image.
Returns:
list[Tensor]: Predicted instance segmentation masks.
"""
prototypes = self.protonet(x)
prototypes = prototypes.permute(0, 2, 3, 1).contiguous()
num_imgs = x.size(0)
# The reason for not using self.training is that
# val workflow will have a dimension mismatch error.
# Note that this writing method is very tricky.
# Fix https://github.com/open-mmlab/mmdetection/issues/5978
is_train_or_val_workflow = (coeff_pred[0].dim() == 4)
# Train or val workflow
if is_train_or_val_workflow:
coeff_pred_list = []
for coeff_pred_per_level in coeff_pred:
coeff_pred_per_level = \
coeff_pred_per_level.permute(
0, 2, 3, 1).reshape(num_imgs, -1, self.num_protos)
coeff_pred_list.append(coeff_pred_per_level)
coeff_pred = torch.cat(coeff_pred_list, dim=1)
mask_pred_list = []
for idx in range(num_imgs):
cur_prototypes = prototypes[idx]
cur_coeff_pred = coeff_pred[idx]
cur_bboxes = bboxes[idx]
cur_img_meta = img_meta[idx]
# Testing state
if not is_train_or_val_workflow:
bboxes_for_cropping = cur_bboxes
else:
cur_sampling_results = sampling_results[idx]
pos_assigned_gt_inds = \
cur_sampling_results.pos_assigned_gt_inds
bboxes_for_cropping = cur_bboxes[pos_assigned_gt_inds].clone()
pos_inds = cur_sampling_results.pos_inds
cur_coeff_pred = cur_coeff_pred[pos_inds]
# Linearly combine the prototypes with the mask coefficients
mask_pred = cur_prototypes @ cur_coeff_pred.t()
mask_pred = torch.sigmoid(mask_pred)
h, w = cur_img_meta['img_shape'][:2]
bboxes_for_cropping[:, 0] /= w
bboxes_for_cropping[:, 1] /= h
bboxes_for_cropping[:, 2] /= w
bboxes_for_cropping[:, 3] /= h
mask_pred = self.crop(mask_pred, bboxes_for_cropping)
mask_pred = mask_pred.permute(2, 0, 1).contiguous()
mask_pred_list.append(mask_pred)
return mask_pred_list
@force_fp32(apply_to=('mask_pred', ))
def loss(self, mask_pred, gt_masks, gt_bboxes, img_meta, sampling_results):
"""Compute loss of the head.
Args:
mask_pred (list[Tensor]): Predicted prototypes with shape
(num_classes, H, W).
gt_masks (list[Tensor]): Ground truth masks for each image with
the same shape of the input image.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
img_meta (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
sampling_results (List[:obj:``SamplingResult``]): Sampler results
for each image.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
loss_mask = []
num_imgs = len(mask_pred)
total_pos = 0
for idx in range(num_imgs):
cur_mask_pred = mask_pred[idx]
cur_gt_masks = gt_masks[idx].float()
cur_gt_bboxes = gt_bboxes[idx]
cur_img_meta = img_meta[idx]
cur_sampling_results = sampling_results[idx]
pos_assigned_gt_inds = cur_sampling_results.pos_assigned_gt_inds
num_pos = pos_assigned_gt_inds.size(0)
# Since we're producing (near) full image masks,
# it'd take too much vram to backprop on every single mask.
# Thus we select only a subset.
if num_pos > self.max_masks_to_train:
perm = torch.randperm(num_pos)
select = perm[:self.max_masks_to_train]
cur_mask_pred = cur_mask_pred[select]
pos_assigned_gt_inds = pos_assigned_gt_inds[select]
num_pos = self.max_masks_to_train
total_pos += num_pos
gt_bboxes_for_reweight = cur_gt_bboxes[pos_assigned_gt_inds]
mask_targets = self.get_targets(cur_mask_pred, cur_gt_masks,
pos_assigned_gt_inds)
if num_pos == 0:
loss = cur_mask_pred.sum() * 0.
elif mask_targets is None:
loss = F.binary_cross_entropy(cur_mask_pred,
torch.zeros_like(cur_mask_pred),
torch.zeros_like(cur_mask_pred))
else:
cur_mask_pred = torch.clamp(cur_mask_pred, 0, 1)
loss = F.binary_cross_entropy(
cur_mask_pred, mask_targets,
reduction='none') * self.loss_mask_weight
h, w = cur_img_meta['img_shape'][:2]
gt_bboxes_width = (gt_bboxes_for_reweight[:, 2] -
gt_bboxes_for_reweight[:, 0]) / w
gt_bboxes_height = (gt_bboxes_for_reweight[:, 3] -
gt_bboxes_for_reweight[:, 1]) / h
loss = loss.mean(dim=(1,
2)) / gt_bboxes_width / gt_bboxes_height
loss = torch.sum(loss)
loss_mask.append(loss)
if total_pos == 0:
total_pos += 1 # avoid nan
loss_mask = [x / total_pos for x in loss_mask]
return dict(loss_mask=loss_mask)
def get_targets(self, mask_pred, gt_masks, pos_assigned_gt_inds):
"""Compute instance segmentation targets for each image.
Args:
mask_pred (Tensor): Predicted prototypes with shape
(num_classes, H, W).
gt_masks (Tensor): Ground truth masks for each image with
the same shape of the input image.
pos_assigned_gt_inds (Tensor): GT indices of the corresponding
positive samples.
Returns:
Tensor: Instance segmentation targets with shape
(num_instances, H, W).
"""
if gt_masks.size(0) == 0:
return None
mask_h, mask_w = mask_pred.shape[-2:]
gt_masks = F.interpolate(
gt_masks.unsqueeze(0), (mask_h, mask_w),
mode='bilinear',
align_corners=False).squeeze(0)
gt_masks = gt_masks.gt(0.5).float()
mask_targets = gt_masks[pos_assigned_gt_inds]
return mask_targets
def get_seg_masks(self, mask_pred, label_pred, img_meta, rescale):
"""Resize, binarize, and format the instance mask predictions.
Args:
mask_pred (Tensor): shape (N, H, W).
label_pred (Tensor): shape (N, ).
img_meta (dict): Meta information of each image, e.g.,
image size, scaling factor, etc.
rescale (bool): If rescale is False, then returned masks will
fit the scale of imgs[0].
Returns:
list[ndarray]: Mask predictions grouped by their predicted classes.
"""
ori_shape = img_meta['ori_shape']
scale_factor = img_meta['scale_factor']
if rescale:
img_h, img_w = ori_shape[:2]
else:
img_h = np.round(ori_shape[0] * scale_factor[1]).astype(np.int32)
img_w = np.round(ori_shape[1] * scale_factor[0]).astype(np.int32)
cls_segms = [[] for _ in range(self.num_classes)]
if mask_pred.size(0) == 0:
return cls_segms
mask_pred = F.interpolate(
mask_pred.unsqueeze(0), (img_h, img_w),
mode='bilinear',
align_corners=False).squeeze(0) > 0.5
mask_pred = mask_pred.cpu().numpy().astype(np.uint8)
for m, l in zip(mask_pred, label_pred):
cls_segms[l].append(m)
return cls_segms
def crop(self, masks, boxes, padding=1):
"""Crop predicted masks by zeroing out everything not in the predicted
bbox.
Args:
masks (Tensor): shape [H, W, N].
boxes (Tensor): bbox coords in relative point form with
shape [N, 4].
Return:
Tensor: The cropped masks.
"""
h, w, n = masks.size()
x1, x2 = self.sanitize_coordinates(
boxes[:, 0], boxes[:, 2], w, padding, cast=False)
y1, y2 = self.sanitize_coordinates(
boxes[:, 1], boxes[:, 3], h, padding, cast=False)
rows = torch.arange(
w, device=masks.device, dtype=x1.dtype).view(1, -1,
1).expand(h, w, n)
cols = torch.arange(
h, device=masks.device, dtype=x1.dtype).view(-1, 1,
1).expand(h, w, n)
masks_left = rows >= x1.view(1, 1, -1)
masks_right = rows < x2.view(1, 1, -1)
masks_up = cols >= y1.view(1, 1, -1)
masks_down = cols < y2.view(1, 1, -1)
crop_mask = masks_left * masks_right * masks_up * masks_down
return masks * crop_mask.float()
def sanitize_coordinates(self, x1, x2, img_size, padding=0, cast=True):
"""Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0,
and x2 <= image_size. Also converts from relative to absolute
coordinates and casts the results to long tensors.
Warning: this does things in-place behind the scenes so
copy if necessary.
Args:
_x1 (Tensor): shape (N, ).
_x2 (Tensor): shape (N, ).
img_size (int): Size of the input image.
padding (int): x1 >= padding, x2 <= image_size-padding.
cast (bool): If cast is false, the result won't be cast to longs.
Returns:
tuple:
x1 (Tensor): Sanitized _x1.
x2 (Tensor): Sanitized _x2.
"""
x1 = x1 * img_size
x2 = x2 * img_size
if cast:
x1 = x1.long()
x2 = x2.long()
x1 = torch.min(x1, x2)
x2 = torch.max(x1, x2)
x1 = torch.clamp(x1 - padding, min=0)
x2 = torch.clamp(x2 + padding, max=img_size)
return x1, x2
def simple_test(self,
feats,
det_bboxes,
det_labels,
det_coeffs,
img_metas,
rescale=False):
"""Test function without test-time augmentation.
Args:
feats (tuple[torch.Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
det_bboxes (list[Tensor]): BBox results of each image. each
element is (n, 5) tensor, where 5 represent
(tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
det_labels (list[Tensor]): BBox results of each image. each
element is (n, ) tensor, each element represents the class
label of the corresponding box.
det_coeffs (list[Tensor]): BBox coefficient of each image. each
element is (n, m) tensor, m is vector length.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[list]: encoded masks. The c-th item in the outer list
corresponds to the c-th class. Given the c-th outer list, the
i-th item in that inner list is the mask for the i-th box with
class label c.
"""
num_imgs = len(img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
segm_results = [[[] for _ in range(self.num_classes)]
for _ in range(num_imgs)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
if rescale and not isinstance(scale_factors[0], float):
scale_factors = [
torch.from_numpy(scale_factor).to(det_bboxes[0].device)
for scale_factor in scale_factors
]
_bboxes = [
det_bboxes[i][:, :4] *
scale_factors[i] if rescale else det_bboxes[i][:, :4]
for i in range(len(det_bboxes))
]
mask_preds = self.forward(feats[0], det_coeffs, _bboxes, img_metas)
# apply mask post-processing to each image individually
segm_results = []
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
segm_results.append([[] for _ in range(self.num_classes)])
else:
segm_result = self.get_seg_masks(mask_preds[i],
det_labels[i],
img_metas[i], rescale)
segm_results.append(segm_result)
return segm_results
class InterpolateModule(BaseModule):
"""This is a module version of F.interpolate.
Any arguments you give it just get passed along for the ride.
"""
def __init__(self, *args, init_cfg=None, **kwargs):
super().__init__(init_cfg)
self.args = args
self.kwargs = kwargs
def forward(self, x):
"""Forward features from the upstream network."""
return F.interpolate(x, *self.args, **self.kwargs)
|