Spaces:
Runtime error
Runtime error
File size: 17,413 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm,
normal_init)
from mmcv.runner import force_fp32
from mmdet.core import anchor_inside_flags, multi_apply, reduce_mean, unmap
from ..builder import HEADS
from .anchor_head import AnchorHead
INF = 1e8
def levels_to_images(mlvl_tensor):
"""Concat multi-level feature maps by image.
[feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
(N, H*W , C), then split the element to N elements with shape (H*W, C), and
concat elements in same image of all level along first dimension.
Args:
mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
corresponding level. Each element is of shape (N, C, H, W)
Returns:
list[torch.Tensor]: A list that contains N tensors and each tensor is
of shape (num_elements, C)
"""
batch_size = mlvl_tensor[0].size(0)
batch_list = [[] for _ in range(batch_size)]
channels = mlvl_tensor[0].size(1)
for t in mlvl_tensor:
t = t.permute(0, 2, 3, 1)
t = t.view(batch_size, -1, channels).contiguous()
for img in range(batch_size):
batch_list[img].append(t[img])
return [torch.cat(item, 0) for item in batch_list]
@HEADS.register_module()
class YOLOFHead(AnchorHead):
"""YOLOFHead Paper link: https://arxiv.org/abs/2103.09460.
Args:
num_classes (int): The number of object classes (w/o background)
in_channels (List[int]): The number of input channels per scale.
cls_num_convs (int): The number of convolutions of cls branch.
Default 2.
reg_num_convs (int): The number of convolutions of reg branch.
Default 4.
norm_cfg (dict): Dictionary to construct and config norm layer.
"""
def __init__(self,
num_classes,
in_channels,
num_cls_convs=2,
num_reg_convs=4,
norm_cfg=dict(type='BN', requires_grad=True),
**kwargs):
self.num_cls_convs = num_cls_convs
self.num_reg_convs = num_reg_convs
self.norm_cfg = norm_cfg
super(YOLOFHead, self).__init__(num_classes, in_channels, **kwargs)
def _init_layers(self):
cls_subnet = []
bbox_subnet = []
for i in range(self.num_cls_convs):
cls_subnet.append(
ConvModule(
self.in_channels,
self.in_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg))
for i in range(self.num_reg_convs):
bbox_subnet.append(
ConvModule(
self.in_channels,
self.in_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg))
self.cls_subnet = nn.Sequential(*cls_subnet)
self.bbox_subnet = nn.Sequential(*bbox_subnet)
self.cls_score = nn.Conv2d(
self.in_channels,
self.num_base_priors * self.num_classes,
kernel_size=3,
stride=1,
padding=1)
self.bbox_pred = nn.Conv2d(
self.in_channels,
self.num_base_priors * 4,
kernel_size=3,
stride=1,
padding=1)
self.object_pred = nn.Conv2d(
self.in_channels,
self.num_base_priors,
kernel_size=3,
stride=1,
padding=1)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
# Use prior in model initialization to improve stability
bias_cls = bias_init_with_prob(0.01)
torch.nn.init.constant_(self.cls_score.bias, bias_cls)
def forward_single(self, feature):
cls_score = self.cls_score(self.cls_subnet(feature))
N, _, H, W = cls_score.shape
cls_score = cls_score.view(N, -1, self.num_classes, H, W)
reg_feat = self.bbox_subnet(feature)
bbox_reg = self.bbox_pred(reg_feat)
objectness = self.object_pred(reg_feat)
# implicit objectness
objectness = objectness.view(N, -1, 1, H, W)
normalized_cls_score = cls_score + objectness - torch.log(
1. + torch.clamp(cls_score.exp(), max=INF) +
torch.clamp(objectness.exp(), max=INF))
normalized_cls_score = normalized_cls_score.view(N, -1, H, W)
return normalized_cls_score, bbox_reg
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (batch, num_anchors * num_classes, h, w)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (batch, num_anchors * 4, h, w)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss. Default: None
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == 1
assert self.prior_generator.num_levels == 1
device = cls_scores[0].device
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
# The output level is always 1
anchor_list = [anchors[0] for anchors in anchor_list]
valid_flag_list = [valid_flags[0] for valid_flags in valid_flag_list]
cls_scores_list = levels_to_images(cls_scores)
bbox_preds_list = levels_to_images(bbox_preds)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
cls_scores_list,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(batch_labels, batch_label_weights, num_total_pos, num_total_neg,
batch_bbox_weights, batch_pos_predicted_boxes,
batch_target_boxes) = cls_reg_targets
flatten_labels = batch_labels.reshape(-1)
batch_label_weights = batch_label_weights.reshape(-1)
cls_score = cls_scores[0].permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
num_total_samples = (num_total_pos +
num_total_neg) if self.sampling else num_total_pos
num_total_samples = reduce_mean(
cls_score.new_tensor(num_total_samples)).clamp_(1.0).item()
# classification loss
loss_cls = self.loss_cls(
cls_score,
flatten_labels,
batch_label_weights,
avg_factor=num_total_samples)
# regression loss
if batch_pos_predicted_boxes.shape[0] == 0:
# no pos sample
loss_bbox = batch_pos_predicted_boxes.sum() * 0
else:
loss_bbox = self.loss_bbox(
batch_pos_predicted_boxes,
batch_target_boxes,
batch_bbox_weights.float(),
avg_factor=num_total_samples)
return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)
def get_targets(self,
cls_scores_list,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
cls_scores_list (list[Tensor]): Classification scores of
each image. each is a 4D-tensor, the shape is
(h * w, num_anchors * num_classes).
bbox_preds_list (list[Tensor]): Bbox preds of each image.
each is a 4D-tensor, the shape is (h * w, num_anchors * 4).
anchor_list (list[Tensor]): Anchors of each image. Each element of
is a tensor of shape (h * w * num_anchors, 4).
valid_flag_list (list[Tensor]): Valid flags of each image. Each
element of is a tensor of shape (h * w * num_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: Usually returns a tuple containing learning targets.
- batch_labels (Tensor): Label of all images. Each element \
of is a tensor of shape (batch, h * w * num_anchors)
- batch_label_weights (Tensor): Label weights of all images \
of is a tensor of shape (batch, h * w * num_anchors)
- num_total_pos (int): Number of positive samples in all \
images.
- num_total_neg (int): Number of negative samples in all \
images.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end
"""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
results = multi_apply(
self._get_targets_single,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
(all_labels, all_label_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = results[:5]
rest_results = list(results[5:]) # user-added return values
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
batch_labels = torch.stack(all_labels, 0)
batch_label_weights = torch.stack(all_label_weights, 0)
res = (batch_labels, batch_label_weights, num_total_pos, num_total_neg)
for i, rests in enumerate(rest_results): # user-added return values
rest_results[i] = torch.cat(rests, 0)
return res + tuple(rest_results)
def _get_targets_single(self,
bbox_preds,
flat_anchors,
valid_flags,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in a
single image.
Args:
bbox_preds (Tensor): Bbox prediction of the image, which
shape is (h * w ,4)
flat_anchors (Tensor): Anchors of the image, which shape is
(h * w * num_anchors ,4)
valid_flags (Tensor): Valid flags of the image, which shape is
(h * w * num_anchors,).
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
img_meta (dict): Meta info of the image.
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple:
labels (Tensor): Labels of image, which shape is
(h * w * num_anchors, ).
label_weights (Tensor): Label weights of image, which shape is
(h * w * num_anchors, ).
pos_inds (Tensor): Pos index of image.
neg_inds (Tensor): Neg index of image.
sampling_result (obj:`SamplingResult`): Sampling result.
pos_bbox_weights (Tensor): The Weight of using to calculate
the bbox branch loss, which shape is (num, ).
pos_predicted_boxes (Tensor): boxes predicted value of
using to calculate the bbox branch loss, which shape is
(num, 4).
pos_target_boxes (Tensor): boxes target value of
using to calculate the bbox branch loss, which shape is
(num, 4).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg.allowed_border)
if not inside_flags.any():
return (None, ) * 8
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
bbox_preds = bbox_preds.reshape(-1, 4)
bbox_preds = bbox_preds[inside_flags, :]
# decoded bbox
decoder_bbox_preds = self.bbox_coder.decode(anchors, bbox_preds)
assign_result = self.assigner.assign(
decoder_bbox_preds, anchors, gt_bboxes, gt_bboxes_ignore,
None if self.sampling else gt_labels)
pos_bbox_weights = assign_result.get_extra_property('pos_idx')
pos_predicted_boxes = assign_result.get_extra_property(
'pos_predicted_boxes')
pos_target_boxes = assign_result.get_extra_property('target_boxes')
sampling_result = self.sampler.sample(assign_result, anchors,
gt_bboxes)
num_valid_anchors = anchors.shape[0]
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
if gt_labels is None:
# Only rpn gives gt_labels as None
# Foreground is the first class since v2.5.0
labels[pos_inds] = 0
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
labels = unmap(
labels, num_total_anchors, inside_flags,
fill=self.num_classes) # fill bg label
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
return (labels, label_weights, pos_inds, neg_inds, sampling_result,
pos_bbox_weights, pos_predicted_boxes, pos_target_boxes)
|