File size: 4,406 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright (c) OpenMMLab. All rights reserved.
from ..builder import DETECTORS
from .two_stage import TwoStageDetector


@DETECTORS.register_module()
class SparseRCNN(TwoStageDetector):
    r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with
    Learnable Proposals <https://arxiv.org/abs/2011.12450>`_"""

    def __init__(self, *args, **kwargs):
        super(SparseRCNN, self).__init__(*args, **kwargs)
        assert self.with_rpn, 'Sparse R-CNN and QueryInst ' \
            'do not support external proposals'

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      proposals=None,
                      **kwargs):
        """Forward function of SparseR-CNN and QueryInst in train stage.

        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.
            img_metas (list[dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                :class:`mmdet.datasets.pipelines.Collect`.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            gt_bboxes_ignore (None | list[Tensor): specify which bounding
                boxes can be ignored when computing the loss.
            gt_masks (List[Tensor], optional) : Segmentation masks for
                each box. This is required to train QueryInst.
            proposals (List[Tensor], optional): override rpn proposals with
                custom proposals. Use when `with_rpn` is False.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """

        assert proposals is None, 'Sparse R-CNN and QueryInst ' \
            'do not support external proposals'

        x = self.extract_feat(img)
        proposal_boxes, proposal_features, imgs_whwh = \
            self.rpn_head.forward_train(x, img_metas)
        roi_losses = self.roi_head.forward_train(
            x,
            proposal_boxes,
            proposal_features,
            img_metas,
            gt_bboxes,
            gt_labels,
            gt_bboxes_ignore=gt_bboxes_ignore,
            gt_masks=gt_masks,
            imgs_whwh=imgs_whwh)
        return roi_losses

    def simple_test(self, img, img_metas, rescale=False):
        """Test function without test time augmentation.

        Args:
            imgs (list[torch.Tensor]): List of multiple images
            img_metas (list[dict]): List of image information.
            rescale (bool): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[list[np.ndarray]]: BBox results of each image and classes.
                The outer list corresponds to each image. The inner list
                corresponds to each class.
        """
        x = self.extract_feat(img)
        proposal_boxes, proposal_features, imgs_whwh = \
            self.rpn_head.simple_test_rpn(x, img_metas)
        results = self.roi_head.simple_test(
            x,
            proposal_boxes,
            proposal_features,
            img_metas,
            imgs_whwh=imgs_whwh,
            rescale=rescale)
        return results

    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmdetection/tools/analysis_tools/get_flops.py`
        """
        # backbone
        x = self.extract_feat(img)
        # rpn
        num_imgs = len(img)
        dummy_img_metas = [
            dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs)
        ]
        proposal_boxes, proposal_features, imgs_whwh = \
            self.rpn_head.simple_test_rpn(x, dummy_img_metas)
        # roi_head
        roi_outs = self.roi_head.forward_dummy(x, proposal_boxes,
                                               proposal_features,
                                               dummy_img_metas)
        return roi_outs