Spaces:
Runtime error
Runtime error
File size: 13,853 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence
import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from ..builder import PIPELINES
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(f'type {type(data)} cannot be converted to tensor.')
@PIPELINES.register_module()
class ToTensor:
"""Convert some results to :obj:`torch.Tensor` by given keys.
Args:
keys (Sequence[str]): Keys that need to be converted to Tensor.
"""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
"""Call function to convert data in results to :obj:`torch.Tensor`.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data converted
to :obj:`torch.Tensor`.
"""
for key in self.keys:
results[key] = to_tensor(results[key])
return results
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'
@PIPELINES.register_module()
class ImageToTensor:
"""Convert image to :obj:`torch.Tensor` by given keys.
The dimension order of input image is (H, W, C). The pipeline will convert
it to (C, H, W). If only 2 dimension (H, W) is given, the output would be
(1, H, W).
Args:
keys (Sequence[str]): Key of images to be converted to Tensor.
"""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
"""Call function to convert image in results to :obj:`torch.Tensor` and
permute the channel order.
Args:
results (dict): Result dict contains the image data to convert.
Returns:
dict: The result dict contains the image converted
to :obj:`torch.Tensor` and permuted to (C, H, W) order.
"""
for key in self.keys:
img = results[key]
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
results[key] = to_tensor(img).permute(2, 0, 1).contiguous()
return results
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'
@PIPELINES.register_module()
class Transpose:
"""Transpose some results by given keys.
Args:
keys (Sequence[str]): Keys of results to be transposed.
order (Sequence[int]): Order of transpose.
"""
def __init__(self, keys, order):
self.keys = keys
self.order = order
def __call__(self, results):
"""Call function to transpose the channel order of data in results.
Args:
results (dict): Result dict contains the data to transpose.
Returns:
dict: The result dict contains the data transposed to \
``self.order``.
"""
for key in self.keys:
results[key] = results[key].transpose(self.order)
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, order={self.order})'
@PIPELINES.register_module()
class ToDataContainer:
"""Convert results to :obj:`mmcv.DataContainer` by given fields.
Args:
fields (Sequence[dict]): Each field is a dict like
``dict(key='xxx', **kwargs)``. The ``key`` in result will
be converted to :obj:`mmcv.DataContainer` with ``**kwargs``.
Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'),
dict(key='gt_labels'))``.
"""
def __init__(self,
fields=(dict(key='img', stack=True), dict(key='gt_bboxes'),
dict(key='gt_labels'))):
self.fields = fields
def __call__(self, results):
"""Call function to convert data in results to
:obj:`mmcv.DataContainer`.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data converted to \
:obj:`mmcv.DataContainer`.
"""
for field in self.fields:
field = field.copy()
key = field.pop('key')
results[key] = DC(results[key], **field)
return results
def __repr__(self):
return self.__class__.__name__ + f'(fields={self.fields})'
@PIPELINES.register_module()
class DefaultFormatBundle:
"""Default formatting bundle.
It simplifies the pipeline of formatting common fields, including "img",
"proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
These fields are formatted as follows.
- img: (1)transpose & to tensor, (2)to DataContainer (stack=True)
- proposals: (1)to tensor, (2)to DataContainer
- gt_bboxes: (1)to tensor, (2)to DataContainer
- gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
- gt_labels: (1)to tensor, (2)to DataContainer
- gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
- gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \
(3)to DataContainer (stack=True)
Args:
img_to_float (bool): Whether to force the image to be converted to
float type. Default: True.
pad_val (dict): A dict for padding value in batch collating,
the default value is `dict(img=0, masks=0, seg=255)`.
Without this argument, the padding value of "gt_semantic_seg"
will be set to 0 by default, which should be 255.
"""
def __init__(self,
img_to_float=True,
pad_val=dict(img=0, masks=0, seg=255)):
self.img_to_float = img_to_float
self.pad_val = pad_val
def __call__(self, results):
"""Call function to transform and format common fields in results.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data that is formatted with \
default bundle.
"""
if 'img' in results:
img = results['img']
if self.img_to_float is True and img.dtype == np.uint8:
# Normally, image is of uint8 type without normalization.
# At this time, it needs to be forced to be converted to
# flot32, otherwise the model training and inference
# will be wrong. Only used for YOLOX currently .
img = img.astype(np.float32)
# add default meta keys
results = self._add_default_meta_keys(results)
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
# To improve the computational speed by by 3-5 times, apply:
# If image is not contiguous, use
# `numpy.transpose()` followed by `numpy.ascontiguousarray()`
# If image is already contiguous, use
# `torch.permute()` followed by `torch.contiguous()`
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533
# for more details
if not img.flags.c_contiguous:
img = np.ascontiguousarray(img.transpose(2, 0, 1))
img = to_tensor(img)
else:
img = to_tensor(img).permute(2, 0, 1).contiguous()
results['img'] = DC(
img, padding_value=self.pad_val['img'], stack=True)
for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']:
if key not in results:
continue
results[key] = DC(to_tensor(results[key]))
if 'gt_masks' in results:
results['gt_masks'] = DC(
results['gt_masks'],
padding_value=self.pad_val['masks'],
cpu_only=True)
if 'gt_semantic_seg' in results:
results['gt_semantic_seg'] = DC(
to_tensor(results['gt_semantic_seg'][None, ...]),
padding_value=self.pad_val['seg'],
stack=True)
return results
def _add_default_meta_keys(self, results):
"""Add default meta keys.
We set default meta keys including `pad_shape`, `scale_factor` and
`img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and
`Pad` are implemented during the whole pipeline.
Args:
results (dict): Result dict contains the data to convert.
Returns:
results (dict): Updated result dict contains the data to convert.
"""
img = results['img']
results.setdefault('pad_shape', img.shape)
results.setdefault('scale_factor', 1.0)
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
results.setdefault(
'img_norm_cfg',
dict(
mean=np.zeros(num_channels, dtype=np.float32),
std=np.ones(num_channels, dtype=np.float32),
to_rgb=False))
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(img_to_float={self.img_to_float})'
@PIPELINES.register_module()
class Collect:
"""Collect data from the loader relevant to the specific task.
This is usually the last stage of the data loader pipeline. Typically keys
is set to some subset of "img", "proposals", "gt_bboxes",
"gt_bboxes_ignore", "gt_labels", and/or "gt_masks".
The "img_meta" item is always populated. The contents of the "img_meta"
dictionary depends on "meta_keys". By default this includes:
- "img_shape": shape of the image input to the network as a tuple \
(h, w, c). Note that images may be zero padded on the \
bottom/right if the batch tensor is larger than this shape.
- "scale_factor": a float indicating the preprocessing scale
- "flip": a boolean indicating if image flip transform was used
- "filename": path to the image file
- "ori_shape": original shape of the image as a tuple (h, w, c)
- "pad_shape": image shape after padding
- "img_norm_cfg": a dict of normalization information:
- mean - per channel mean subtraction
- std - per channel std divisor
- to_rgb - bool indicating if bgr was converted to rgb
Args:
keys (Sequence[str]): Keys of results to be collected in ``data``.
meta_keys (Sequence[str], optional): Meta keys to be converted to
``mmcv.DataContainer`` and collected in ``data[img_metas]``.
Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg')``
"""
def __init__(self,
keys,
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg')):
self.keys = keys
self.meta_keys = meta_keys
def __call__(self, results):
"""Call function to collect keys in results. The keys in ``meta_keys``
will be converted to :obj:mmcv.DataContainer.
Args:
results (dict): Result dict contains the data to collect.
Returns:
dict: The result dict contains the following keys
- keys in``self.keys``
- ``img_metas``
"""
data = {}
img_meta = {}
for key in self.meta_keys:
img_meta[key] = results[key]
data['img_metas'] = DC(img_meta, cpu_only=True)
for key in self.keys:
data[key] = results[key]
return data
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, meta_keys={self.meta_keys})'
@PIPELINES.register_module()
class WrapFieldsToLists:
"""Wrap fields of the data dictionary into lists for evaluation.
This class can be used as a last step of a test or validation
pipeline for single image evaluation or inference.
Example:
>>> test_pipeline = [
>>> dict(type='LoadImageFromFile'),
>>> dict(type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
>>> dict(type='Pad', size_divisor=32),
>>> dict(type='ImageToTensor', keys=['img']),
>>> dict(type='Collect', keys=['img']),
>>> dict(type='WrapFieldsToLists')
>>> ]
"""
def __call__(self, results):
"""Call function to wrap fields into lists.
Args:
results (dict): Result dict contains the data to wrap.
Returns:
dict: The result dict where value of ``self.keys`` are wrapped \
into list.
"""
# Wrap dict fields into lists
for key, val in results.items():
results[key] = [val]
return results
def __repr__(self):
return f'{self.__class__.__name__}()'
|