Spaces:
Runtime error
Runtime error
File size: 9,113 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) 2018, Alexander Kirillov
# This file supports `file_client` for `panopticapi`,
# the source code is copied from `panopticapi`,
# only the way to load the gt images is modified.
import multiprocessing
import os
import mmcv
import numpy as np
try:
from panopticapi.evaluation import OFFSET, VOID, PQStat
from panopticapi.utils import rgb2id
except ImportError:
PQStat = None
rgb2id = None
VOID = 0
OFFSET = 256 * 256 * 256
def pq_compute_single_core(proc_id,
annotation_set,
gt_folder,
pred_folder,
categories,
file_client=None,
print_log=False):
"""The single core function to evaluate the metric of Panoptic
Segmentation.
Same as the function with the same name in `panopticapi`. Only the function
to load the images is changed to use the file client.
Args:
proc_id (int): The id of the mini process.
gt_folder (str): The path of the ground truth images.
pred_folder (str): The path of the prediction images.
categories (str): The categories of the dataset.
file_client (object): The file client of the dataset. If None,
the backend will be set to `disk`.
print_log (bool): Whether to print the log. Defaults to False.
"""
if PQStat is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
if file_client is None:
file_client_args = dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
pq_stat = PQStat()
idx = 0
for gt_ann, pred_ann in annotation_set:
if print_log and idx % 100 == 0:
print('Core: {}, {} from {} images processed'.format(
proc_id, idx, len(annotation_set)))
idx += 1
# The gt images can be on the local disk or `ceph`, so we use
# file_client here.
img_bytes = file_client.get(
os.path.join(gt_folder, gt_ann['file_name']))
pan_gt = mmcv.imfrombytes(img_bytes, flag='color', channel_order='rgb')
pan_gt = rgb2id(pan_gt)
# The predictions can only be on the local dist now.
pan_pred = mmcv.imread(
os.path.join(pred_folder, pred_ann['file_name']),
flag='color',
channel_order='rgb')
pan_pred = rgb2id(pan_pred)
gt_segms = {el['id']: el for el in gt_ann['segments_info']}
pred_segms = {el['id']: el for el in pred_ann['segments_info']}
# predicted segments area calculation + prediction sanity checks
pred_labels_set = set(el['id'] for el in pred_ann['segments_info'])
labels, labels_cnt = np.unique(pan_pred, return_counts=True)
for label, label_cnt in zip(labels, labels_cnt):
if label not in pred_segms:
if label == VOID:
continue
raise KeyError(
'In the image with ID {} segment with ID {} is '
'presented in PNG and not presented in JSON.'.format(
gt_ann['image_id'], label))
pred_segms[label]['area'] = label_cnt
pred_labels_set.remove(label)
if pred_segms[label]['category_id'] not in categories:
raise KeyError(
'In the image with ID {} segment with ID {} has '
'unknown category_id {}.'.format(
gt_ann['image_id'], label,
pred_segms[label]['category_id']))
if len(pred_labels_set) != 0:
raise KeyError(
'In the image with ID {} the following segment IDs {} '
'are presented in JSON and not presented in PNG.'.format(
gt_ann['image_id'], list(pred_labels_set)))
# confusion matrix calculation
pan_gt_pred = pan_gt.astype(np.uint64) * OFFSET + pan_pred.astype(
np.uint64)
gt_pred_map = {}
labels, labels_cnt = np.unique(pan_gt_pred, return_counts=True)
for label, intersection in zip(labels, labels_cnt):
gt_id = label // OFFSET
pred_id = label % OFFSET
gt_pred_map[(gt_id, pred_id)] = intersection
# count all matched pairs
gt_matched = set()
pred_matched = set()
for label_tuple, intersection in gt_pred_map.items():
gt_label, pred_label = label_tuple
if gt_label not in gt_segms:
continue
if pred_label not in pred_segms:
continue
if gt_segms[gt_label]['iscrowd'] == 1:
continue
if gt_segms[gt_label]['category_id'] != pred_segms[pred_label][
'category_id']:
continue
union = pred_segms[pred_label]['area'] + gt_segms[gt_label][
'area'] - intersection - gt_pred_map.get((VOID, pred_label), 0)
iou = intersection / union
if iou > 0.5:
pq_stat[gt_segms[gt_label]['category_id']].tp += 1
pq_stat[gt_segms[gt_label]['category_id']].iou += iou
gt_matched.add(gt_label)
pred_matched.add(pred_label)
# count false positives
crowd_labels_dict = {}
for gt_label, gt_info in gt_segms.items():
if gt_label in gt_matched:
continue
# crowd segments are ignored
if gt_info['iscrowd'] == 1:
crowd_labels_dict[gt_info['category_id']] = gt_label
continue
pq_stat[gt_info['category_id']].fn += 1
# count false positives
for pred_label, pred_info in pred_segms.items():
if pred_label in pred_matched:
continue
# intersection of the segment with VOID
intersection = gt_pred_map.get((VOID, pred_label), 0)
# plus intersection with corresponding CROWD region if it exists
if pred_info['category_id'] in crowd_labels_dict:
intersection += gt_pred_map.get(
(crowd_labels_dict[pred_info['category_id']], pred_label),
0)
# predicted segment is ignored if more than half of
# the segment correspond to VOID and CROWD regions
if intersection / pred_info['area'] > 0.5:
continue
pq_stat[pred_info['category_id']].fp += 1
if print_log:
print('Core: {}, all {} images processed'.format(
proc_id, len(annotation_set)))
return pq_stat
def pq_compute_multi_core(matched_annotations_list,
gt_folder,
pred_folder,
categories,
file_client=None,
nproc=32):
"""Evaluate the metrics of Panoptic Segmentation with multithreading.
Same as the function with the same name in `panopticapi`.
Args:
matched_annotations_list (list): The matched annotation list. Each
element is a tuple of annotations of the same image with the
format (gt_anns, pred_anns).
gt_folder (str): The path of the ground truth images.
pred_folder (str): The path of the prediction images.
categories (str): The categories of the dataset.
file_client (object): The file client of the dataset. If None,
the backend will be set to `disk`.
nproc (int): Number of processes for panoptic quality computing.
Defaults to 32. When `nproc` exceeds the number of cpu cores,
the number of cpu cores is used.
"""
if PQStat is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
if file_client is None:
file_client_args = dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
cpu_num = min(nproc, multiprocessing.cpu_count())
annotations_split = np.array_split(matched_annotations_list, cpu_num)
print('Number of cores: {}, images per core: {}'.format(
cpu_num, len(annotations_split[0])))
workers = multiprocessing.Pool(processes=cpu_num)
processes = []
for proc_id, annotation_set in enumerate(annotations_split):
p = workers.apply_async(pq_compute_single_core,
(proc_id, annotation_set, gt_folder,
pred_folder, categories, file_client))
processes.append(p)
# Close the process pool, otherwise it will lead to memory
# leaking problems.
workers.close()
workers.join()
pq_stat = PQStat()
for p in processes:
pq_stat += p.get()
return pq_stat
|