File size: 2,483 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch

from ..builder import DETECTORS
from .single_stage import SingleStageDetector


@DETECTORS.register_module()
class DETR(SingleStageDetector):
    r"""Implementation of `DETR: End-to-End Object Detection with
    Transformers <https://arxiv.org/pdf/2005.12872>`_"""

    def __init__(self,
                 backbone,
                 bbox_head,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 init_cfg=None):
        super(DETR, self).__init__(backbone, None, bbox_head, train_cfg,
                                   test_cfg, pretrained, init_cfg)

    # over-write `forward_dummy` because:
    # the forward of bbox_head requires img_metas
    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmdetection/tools/analysis_tools/get_flops.py`
        """
        warnings.warn('Warning! MultiheadAttention in DETR does not '
                      'support flops computation! Do not use the '
                      'results in your papers!')

        batch_size, _, height, width = img.shape
        dummy_img_metas = [
            dict(
                batch_input_shape=(height, width),
                img_shape=(height, width, 3)) for _ in range(batch_size)
        ]
        x = self.extract_feat(img)
        outs = self.bbox_head(x, dummy_img_metas)
        return outs

    # over-write `onnx_export` because:
    # (1) the forward of bbox_head requires img_metas
    # (2) the different behavior (e.g. construction of `masks`) between
    # torch and ONNX model, during the forward of bbox_head
    def onnx_export(self, img, img_metas):
        """Test function for exporting to ONNX, without test time augmentation.

        Args:
            img (torch.Tensor): input images.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[Tensor, Tensor]: dets of shape [N, num_det, 5]
                and class labels of shape [N, num_det].
        """
        x = self.extract_feat(img)
        # forward of this head requires img_metas
        outs = self.bbox_head.forward_onnx(x, img_metas)
        # get shape as tensor
        img_shape = torch._shape_as_tensor(img)[2:]
        img_metas[0]['img_shape_for_onnx'] = img_shape

        det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas)

        return det_bboxes, det_labels