File size: 4,891 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.runner import BaseModule

from ..builder import NECKS


@NECKS.register_module()
class SSDNeck(BaseModule):
    """Extra layers of SSD backbone to generate multi-scale feature maps.

    Args:
        in_channels (Sequence[int]): Number of input channels per scale.
        out_channels (Sequence[int]): Number of output channels per scale.
        level_strides (Sequence[int]): Stride of 3x3 conv per level.
        level_paddings (Sequence[int]): Padding size of 3x3 conv per level.
        l2_norm_scale (float|None): L2 normalization layer init scale.
            If None, not use L2 normalization on the first input feature.
        last_kernel_size (int): Kernel size of the last conv layer.
            Default: 3.
        use_depthwise (bool): Whether to use DepthwiseSeparableConv.
            Default: False.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: None.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU').
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 level_strides,
                 level_paddings,
                 l2_norm_scale=20.,
                 last_kernel_size=3,
                 use_depthwise=False,
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=dict(type='ReLU'),
                 init_cfg=[
                     dict(
                         type='Xavier', distribution='uniform',
                         layer='Conv2d'),
                     dict(type='Constant', val=1, layer='BatchNorm2d'),
                 ]):
        super(SSDNeck, self).__init__(init_cfg)
        assert len(out_channels) > len(in_channels)
        assert len(out_channels) - len(in_channels) == len(level_strides)
        assert len(level_strides) == len(level_paddings)
        assert in_channels == out_channels[:len(in_channels)]

        if l2_norm_scale:
            self.l2_norm = L2Norm(in_channels[0], l2_norm_scale)
            self.init_cfg += [
                dict(
                    type='Constant',
                    val=self.l2_norm.scale,
                    override=dict(name='l2_norm'))
            ]

        self.extra_layers = nn.ModuleList()
        extra_layer_channels = out_channels[len(in_channels):]
        second_conv = DepthwiseSeparableConvModule if \
            use_depthwise else ConvModule

        for i, (out_channel, stride, padding) in enumerate(
                zip(extra_layer_channels, level_strides, level_paddings)):
            kernel_size = last_kernel_size \
                if i == len(extra_layer_channels) - 1 else 3
            per_lvl_convs = nn.Sequential(
                ConvModule(
                    out_channels[len(in_channels) - 1 + i],
                    out_channel // 2,
                    1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg),
                second_conv(
                    out_channel // 2,
                    out_channel,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
            self.extra_layers.append(per_lvl_convs)

    def forward(self, inputs):
        """Forward function."""
        outs = [feat for feat in inputs]
        if hasattr(self, 'l2_norm'):
            outs[0] = self.l2_norm(outs[0])

        feat = outs[-1]
        for layer in self.extra_layers:
            feat = layer(feat)
            outs.append(feat)
        return tuple(outs)


class L2Norm(nn.Module):

    def __init__(self, n_dims, scale=20., eps=1e-10):
        """L2 normalization layer.

        Args:
            n_dims (int): Number of dimensions to be normalized
            scale (float, optional): Defaults to 20..
            eps (float, optional): Used to avoid division by zero.
                Defaults to 1e-10.
        """
        super(L2Norm, self).__init__()
        self.n_dims = n_dims
        self.weight = nn.Parameter(torch.Tensor(self.n_dims))
        self.eps = eps
        self.scale = scale

    def forward(self, x):
        """Forward function."""
        # normalization layer convert to FP32 in FP16 training
        x_float = x.float()
        norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
        return (self.weight[None, :, None, None].float().expand_as(x_float) *
                x_float / norm).type_as(x)