File size: 19,199 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (bias_init_with_prob, build_activation_layer,
                      build_norm_layer)
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.runner import auto_fp16, force_fp32

from mmdet.core import multi_apply
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.dense_heads.atss_head import reduce_mean
from mmdet.models.losses import accuracy
from mmdet.models.utils import build_transformer
from .bbox_head import BBoxHead


@HEADS.register_module()
class DIIHead(BBoxHead):
    r"""Dynamic Instance Interactive Head for `Sparse R-CNN: End-to-End Object
    Detection with Learnable Proposals <https://arxiv.org/abs/2011.12450>`_

    Args:
        num_classes (int): Number of class in dataset.
            Defaults to 80.
        num_ffn_fcs (int): The number of fully-connected
            layers in FFNs. Defaults to 2.
        num_heads (int): The hidden dimension of FFNs.
            Defaults to 8.
        num_cls_fcs (int): The number of fully-connected
            layers in classification subnet. Defaults to 1.
        num_reg_fcs (int): The number of fully-connected
            layers in regression subnet. Defaults to 3.
        feedforward_channels (int): The hidden dimension
            of FFNs. Defaults to 2048
        in_channels (int): Hidden_channels of MultiheadAttention.
            Defaults to 256.
        dropout (float): Probability of drop the channel.
            Defaults to 0.0
        ffn_act_cfg (dict): The activation config for FFNs.
        dynamic_conv_cfg (dict): The convolution config
            for DynamicConv.
        loss_iou (dict): The config for iou or giou loss.

    """

    def __init__(self,
                 num_classes=80,
                 num_ffn_fcs=2,
                 num_heads=8,
                 num_cls_fcs=1,
                 num_reg_fcs=3,
                 feedforward_channels=2048,
                 in_channels=256,
                 dropout=0.0,
                 ffn_act_cfg=dict(type='ReLU', inplace=True),
                 dynamic_conv_cfg=dict(
                     type='DynamicConv',
                     in_channels=256,
                     feat_channels=64,
                     out_channels=256,
                     input_feat_shape=7,
                     act_cfg=dict(type='ReLU', inplace=True),
                     norm_cfg=dict(type='LN')),
                 loss_iou=dict(type='GIoULoss', loss_weight=2.0),
                 init_cfg=None,
                 **kwargs):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super(DIIHead, self).__init__(
            num_classes=num_classes,
            reg_decoded_bbox=True,
            reg_class_agnostic=True,
            init_cfg=init_cfg,
            **kwargs)
        self.loss_iou = build_loss(loss_iou)
        self.in_channels = in_channels
        self.fp16_enabled = False
        self.attention = MultiheadAttention(in_channels, num_heads, dropout)
        self.attention_norm = build_norm_layer(dict(type='LN'), in_channels)[1]

        self.instance_interactive_conv = build_transformer(dynamic_conv_cfg)
        self.instance_interactive_conv_dropout = nn.Dropout(dropout)
        self.instance_interactive_conv_norm = build_norm_layer(
            dict(type='LN'), in_channels)[1]

        self.ffn = FFN(
            in_channels,
            feedforward_channels,
            num_ffn_fcs,
            act_cfg=ffn_act_cfg,
            dropout=dropout)
        self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1]

        self.cls_fcs = nn.ModuleList()
        for _ in range(num_cls_fcs):
            self.cls_fcs.append(
                nn.Linear(in_channels, in_channels, bias=False))
            self.cls_fcs.append(
                build_norm_layer(dict(type='LN'), in_channels)[1])
            self.cls_fcs.append(
                build_activation_layer(dict(type='ReLU', inplace=True)))

        # over load the self.fc_cls in BBoxHead
        if self.loss_cls.use_sigmoid:
            self.fc_cls = nn.Linear(in_channels, self.num_classes)
        else:
            self.fc_cls = nn.Linear(in_channels, self.num_classes + 1)

        self.reg_fcs = nn.ModuleList()
        for _ in range(num_reg_fcs):
            self.reg_fcs.append(
                nn.Linear(in_channels, in_channels, bias=False))
            self.reg_fcs.append(
                build_norm_layer(dict(type='LN'), in_channels)[1])
            self.reg_fcs.append(
                build_activation_layer(dict(type='ReLU', inplace=True)))
        # over load the self.fc_cls in BBoxHead
        self.fc_reg = nn.Linear(in_channels, 4)

        assert self.reg_class_agnostic, 'DIIHead only ' \
            'suppport `reg_class_agnostic=True` '
        assert self.reg_decoded_bbox, 'DIIHead only ' \
            'suppport `reg_decoded_bbox=True`'

    def init_weights(self):
        """Use xavier initialization for all weight parameter and set
        classification head bias as a specific value when use focal loss."""
        super(DIIHead, self).init_weights()
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
            else:
                # adopt the default initialization for
                # the weight and bias of the layer norm
                pass
        if self.loss_cls.use_sigmoid:
            bias_init = bias_init_with_prob(0.01)
            nn.init.constant_(self.fc_cls.bias, bias_init)

    @auto_fp16()
    def forward(self, roi_feat, proposal_feat):
        """Forward function of Dynamic Instance Interactive Head.

        Args:
            roi_feat (Tensor): Roi-pooling features with shape
                (batch_size*num_proposals, feature_dimensions,
                pooling_h , pooling_w).
            proposal_feat (Tensor): Intermediate feature get from
                diihead in last stage, has shape
                (batch_size, num_proposals, feature_dimensions)

          Returns:
                tuple[Tensor]: Usually a tuple of classification scores
                and bbox prediction and a intermediate feature.

                    - cls_scores (Tensor): Classification scores for
                      all proposals, has shape
                      (batch_size, num_proposals, num_classes).
                    - bbox_preds (Tensor): Box energies / deltas for
                      all proposals, has shape
                      (batch_size, num_proposals, 4).
                    - obj_feat (Tensor): Object feature before classification
                      and regression subnet, has shape
                      (batch_size, num_proposal, feature_dimensions).
        """
        N, num_proposals = proposal_feat.shape[:2]

        # Self attention
        proposal_feat = proposal_feat.permute(1, 0, 2)
        proposal_feat = self.attention_norm(self.attention(proposal_feat))
        attn_feats = proposal_feat.permute(1, 0, 2)

        # instance interactive
        proposal_feat = attn_feats.reshape(-1, self.in_channels)
        proposal_feat_iic = self.instance_interactive_conv(
            proposal_feat, roi_feat)
        proposal_feat = proposal_feat + self.instance_interactive_conv_dropout(
            proposal_feat_iic)
        obj_feat = self.instance_interactive_conv_norm(proposal_feat)

        # FFN
        obj_feat = self.ffn_norm(self.ffn(obj_feat))

        cls_feat = obj_feat
        reg_feat = obj_feat

        for cls_layer in self.cls_fcs:
            cls_feat = cls_layer(cls_feat)
        for reg_layer in self.reg_fcs:
            reg_feat = reg_layer(reg_feat)

        cls_score = self.fc_cls(cls_feat).view(
            N, num_proposals, self.num_classes
            if self.loss_cls.use_sigmoid else self.num_classes + 1)
        bbox_delta = self.fc_reg(reg_feat).view(N, num_proposals, 4)

        return cls_score, bbox_delta, obj_feat.view(
            N, num_proposals, self.in_channels), attn_feats

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def loss(self,
             cls_score,
             bbox_pred,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             imgs_whwh=None,
             reduction_override=None,
             **kwargs):
        """"Loss function of DIIHead, get loss of all images.

        Args:
            cls_score (Tensor): Classification prediction
                results of all class, has shape
                (batch_size * num_proposals_single_image, num_classes)
            bbox_pred (Tensor): Regression prediction results,
                has shape
                (batch_size * num_proposals_single_image, 4), the last
                dimension 4 represents [tl_x, tl_y, br_x, br_y].
            labels (Tensor): Label of each proposals, has shape
                (batch_size * num_proposals_single_image
            label_weights (Tensor): Classification loss
                weight of each proposals, has shape
                (batch_size * num_proposals_single_image
            bbox_targets (Tensor): Regression targets of each
                proposals, has shape
                (batch_size * num_proposals_single_image, 4),
                the last dimension 4 represents
                [tl_x, tl_y, br_x, br_y].
            bbox_weights (Tensor): Regression loss weight of each
                proposals's coordinate, has shape
                (batch_size * num_proposals_single_image, 4),
            imgs_whwh (Tensor): imgs_whwh (Tensor): Tensor with\
                shape (batch_size, num_proposals, 4), the last
                dimension means
                [img_width,img_height, img_width, img_height].
            reduction_override (str, optional): The reduction
                method used to override the original reduction
                method of the loss. Options are "none",
                "mean" and "sum". Defaults to None,

            Returns:
                dict[str, Tensor]: Dictionary of loss components
        """
        losses = dict()
        bg_class_ind = self.num_classes
        # note in spare rcnn num_gt == num_pos
        pos_inds = (labels >= 0) & (labels < bg_class_ind)
        num_pos = pos_inds.sum().float()
        avg_factor = reduce_mean(num_pos)
        if cls_score is not None:
            if cls_score.numel() > 0:
                losses['loss_cls'] = self.loss_cls(
                    cls_score,
                    labels,
                    label_weights,
                    avg_factor=avg_factor,
                    reduction_override=reduction_override)
                losses['pos_acc'] = accuracy(cls_score[pos_inds],
                                             labels[pos_inds])
        if bbox_pred is not None:
            # 0~self.num_classes-1 are FG, self.num_classes is BG
            # do not perform bounding box regression for BG anymore.
            if pos_inds.any():
                pos_bbox_pred = bbox_pred.reshape(bbox_pred.size(0),
                                                  4)[pos_inds.type(torch.bool)]
                imgs_whwh = imgs_whwh.reshape(bbox_pred.size(0),
                                              4)[pos_inds.type(torch.bool)]
                losses['loss_bbox'] = self.loss_bbox(
                    pos_bbox_pred / imgs_whwh,
                    bbox_targets[pos_inds.type(torch.bool)] / imgs_whwh,
                    bbox_weights[pos_inds.type(torch.bool)],
                    avg_factor=avg_factor)
                losses['loss_iou'] = self.loss_iou(
                    pos_bbox_pred,
                    bbox_targets[pos_inds.type(torch.bool)],
                    bbox_weights[pos_inds.type(torch.bool)],
                    avg_factor=avg_factor)
            else:
                losses['loss_bbox'] = bbox_pred.sum() * 0
                losses['loss_iou'] = bbox_pred.sum() * 0
        return losses

    def _get_target_single(self, pos_inds, neg_inds, pos_bboxes, neg_bboxes,
                           pos_gt_bboxes, pos_gt_labels, cfg):
        """Calculate the ground truth for proposals in the single image
        according to the sampling results.

        Almost the same as the implementation in `bbox_head`,
        we add pos_inds and neg_inds to select positive and
        negative samples instead of selecting the first num_pos
        as positive samples.

        Args:
            pos_inds (Tensor): The length is equal to the
                positive sample numbers contain all index
                of the positive sample in the origin proposal set.
            neg_inds (Tensor): The length is equal to the
                negative sample numbers contain all index
                of the negative sample in the origin proposal set.
            pos_bboxes (Tensor): Contains all the positive boxes,
                has shape (num_pos, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            neg_bboxes (Tensor): Contains all the negative boxes,
                has shape (num_neg, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_bboxes (Tensor): Contains gt_boxes for
                all positive samples, has shape (num_pos, 4),
                the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_labels (Tensor): Contains gt_labels for
                all positive samples, has shape (num_pos, ).
            cfg (obj:`ConfigDict`): `train_cfg` of R-CNN.

        Returns:
            Tuple[Tensor]: Ground truth for proposals in a single image.
            Containing the following Tensors:

                - labels(Tensor): Gt_labels for all proposals, has
                  shape (num_proposals,).
                - label_weights(Tensor): Labels_weights for all proposals, has
                  shape (num_proposals,).
                - bbox_targets(Tensor):Regression target for all proposals, has
                  shape (num_proposals, 4), the last dimension 4
                  represents [tl_x, tl_y, br_x, br_y].
                - bbox_weights(Tensor):Regression weights for all proposals,
                  has shape (num_proposals, 4).
        """
        num_pos = pos_bboxes.size(0)
        num_neg = neg_bboxes.size(0)
        num_samples = num_pos + num_neg

        # original implementation uses new_zeros since BG are set to be 0
        # now use empty & fill because BG cat_id = num_classes,
        # FG cat_id = [0, num_classes-1]
        labels = pos_bboxes.new_full((num_samples, ),
                                     self.num_classes,
                                     dtype=torch.long)
        label_weights = pos_bboxes.new_zeros(num_samples)
        bbox_targets = pos_bboxes.new_zeros(num_samples, 4)
        bbox_weights = pos_bboxes.new_zeros(num_samples, 4)
        if num_pos > 0:
            labels[pos_inds] = pos_gt_labels
            pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight
            label_weights[pos_inds] = pos_weight
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    pos_bboxes, pos_gt_bboxes)
            else:
                pos_bbox_targets = pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1
        if num_neg > 0:
            label_weights[neg_inds] = 1.0

        return labels, label_weights, bbox_targets, bbox_weights

    def get_targets(self,
                    sampling_results,
                    gt_bboxes,
                    gt_labels,
                    rcnn_train_cfg,
                    concat=True):
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results.

        Almost the same as the implementation in bbox_head, we passed
        additional parameters pos_inds_list and neg_inds_list to
        `_get_target_single` function.

        Args:
            sampling_results (List[obj:SamplingResults]): Assign results of
                all images in a batch after sampling.
            gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,
                each tensor has shape (num_gt, 4),  the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            gt_labels (list[Tensor]): Gt_labels of all images in a batch,
                each tensor has shape (num_gt,).
            rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN.
            concat (bool): Whether to concatenate the results of all
                the images in a single batch.

        Returns:
            Tuple[Tensor]: Ground truth for proposals in a single image.
            Containing the following list of Tensors:

                - labels (list[Tensor],Tensor): Gt_labels for all
                  proposals in a batch, each tensor in list has
                  shape (num_proposals,) when `concat=False`, otherwise just
                  a single tensor has shape (num_all_proposals,).
                - label_weights (list[Tensor]): Labels_weights for
                  all proposals in a batch, each tensor in list has shape
                  (num_proposals,) when `concat=False`, otherwise just a
                  single tensor has shape (num_all_proposals,).
                - bbox_targets (list[Tensor],Tensor): Regression target
                  for all proposals in a batch, each tensor in list has
                  shape (num_proposals, 4) when `concat=False`, otherwise
                  just a single tensor has shape (num_all_proposals, 4),
                  the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
                - bbox_weights (list[tensor],Tensor): Regression weights for
                  all proposals in a batch, each tensor in list has shape
                  (num_proposals, 4) when `concat=False`, otherwise just a
                  single tensor has shape (num_all_proposals, 4).
        """
        pos_inds_list = [res.pos_inds for res in sampling_results]
        neg_inds_list = [res.neg_inds for res in sampling_results]
        pos_bboxes_list = [res.pos_bboxes for res in sampling_results]
        neg_bboxes_list = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results]
        labels, label_weights, bbox_targets, bbox_weights = multi_apply(
            self._get_target_single,
            pos_inds_list,
            neg_inds_list,
            pos_bboxes_list,
            neg_bboxes_list,
            pos_gt_bboxes_list,
            pos_gt_labels_list,
            cfg=rcnn_train_cfg)
        if concat:
            labels = torch.cat(labels, 0)
            label_weights = torch.cat(label_weights, 0)
            bbox_targets = torch.cat(bbox_targets, 0)
            bbox_weights = torch.cat(bbox_weights, 0)
        return labels, label_weights, bbox_targets, bbox_weights