Spaces:
Runtime error
Runtime error
File size: 19,199 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (bias_init_with_prob, build_activation_layer,
build_norm_layer)
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.runner import auto_fp16, force_fp32
from mmdet.core import multi_apply
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.dense_heads.atss_head import reduce_mean
from mmdet.models.losses import accuracy
from mmdet.models.utils import build_transformer
from .bbox_head import BBoxHead
@HEADS.register_module()
class DIIHead(BBoxHead):
r"""Dynamic Instance Interactive Head for `Sparse R-CNN: End-to-End Object
Detection with Learnable Proposals <https://arxiv.org/abs/2011.12450>`_
Args:
num_classes (int): Number of class in dataset.
Defaults to 80.
num_ffn_fcs (int): The number of fully-connected
layers in FFNs. Defaults to 2.
num_heads (int): The hidden dimension of FFNs.
Defaults to 8.
num_cls_fcs (int): The number of fully-connected
layers in classification subnet. Defaults to 1.
num_reg_fcs (int): The number of fully-connected
layers in regression subnet. Defaults to 3.
feedforward_channels (int): The hidden dimension
of FFNs. Defaults to 2048
in_channels (int): Hidden_channels of MultiheadAttention.
Defaults to 256.
dropout (float): Probability of drop the channel.
Defaults to 0.0
ffn_act_cfg (dict): The activation config for FFNs.
dynamic_conv_cfg (dict): The convolution config
for DynamicConv.
loss_iou (dict): The config for iou or giou loss.
"""
def __init__(self,
num_classes=80,
num_ffn_fcs=2,
num_heads=8,
num_cls_fcs=1,
num_reg_fcs=3,
feedforward_channels=2048,
in_channels=256,
dropout=0.0,
ffn_act_cfg=dict(type='ReLU', inplace=True),
dynamic_conv_cfg=dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
input_feat_shape=7,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')),
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
init_cfg=None,
**kwargs):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super(DIIHead, self).__init__(
num_classes=num_classes,
reg_decoded_bbox=True,
reg_class_agnostic=True,
init_cfg=init_cfg,
**kwargs)
self.loss_iou = build_loss(loss_iou)
self.in_channels = in_channels
self.fp16_enabled = False
self.attention = MultiheadAttention(in_channels, num_heads, dropout)
self.attention_norm = build_norm_layer(dict(type='LN'), in_channels)[1]
self.instance_interactive_conv = build_transformer(dynamic_conv_cfg)
self.instance_interactive_conv_dropout = nn.Dropout(dropout)
self.instance_interactive_conv_norm = build_norm_layer(
dict(type='LN'), in_channels)[1]
self.ffn = FFN(
in_channels,
feedforward_channels,
num_ffn_fcs,
act_cfg=ffn_act_cfg,
dropout=dropout)
self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1]
self.cls_fcs = nn.ModuleList()
for _ in range(num_cls_fcs):
self.cls_fcs.append(
nn.Linear(in_channels, in_channels, bias=False))
self.cls_fcs.append(
build_norm_layer(dict(type='LN'), in_channels)[1])
self.cls_fcs.append(
build_activation_layer(dict(type='ReLU', inplace=True)))
# over load the self.fc_cls in BBoxHead
if self.loss_cls.use_sigmoid:
self.fc_cls = nn.Linear(in_channels, self.num_classes)
else:
self.fc_cls = nn.Linear(in_channels, self.num_classes + 1)
self.reg_fcs = nn.ModuleList()
for _ in range(num_reg_fcs):
self.reg_fcs.append(
nn.Linear(in_channels, in_channels, bias=False))
self.reg_fcs.append(
build_norm_layer(dict(type='LN'), in_channels)[1])
self.reg_fcs.append(
build_activation_layer(dict(type='ReLU', inplace=True)))
# over load the self.fc_cls in BBoxHead
self.fc_reg = nn.Linear(in_channels, 4)
assert self.reg_class_agnostic, 'DIIHead only ' \
'suppport `reg_class_agnostic=True` '
assert self.reg_decoded_bbox, 'DIIHead only ' \
'suppport `reg_decoded_bbox=True`'
def init_weights(self):
"""Use xavier initialization for all weight parameter and set
classification head bias as a specific value when use focal loss."""
super(DIIHead, self).init_weights()
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
# adopt the default initialization for
# the weight and bias of the layer norm
pass
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
nn.init.constant_(self.fc_cls.bias, bias_init)
@auto_fp16()
def forward(self, roi_feat, proposal_feat):
"""Forward function of Dynamic Instance Interactive Head.
Args:
roi_feat (Tensor): Roi-pooling features with shape
(batch_size*num_proposals, feature_dimensions,
pooling_h , pooling_w).
proposal_feat (Tensor): Intermediate feature get from
diihead in last stage, has shape
(batch_size, num_proposals, feature_dimensions)
Returns:
tuple[Tensor]: Usually a tuple of classification scores
and bbox prediction and a intermediate feature.
- cls_scores (Tensor): Classification scores for
all proposals, has shape
(batch_size, num_proposals, num_classes).
- bbox_preds (Tensor): Box energies / deltas for
all proposals, has shape
(batch_size, num_proposals, 4).
- obj_feat (Tensor): Object feature before classification
and regression subnet, has shape
(batch_size, num_proposal, feature_dimensions).
"""
N, num_proposals = proposal_feat.shape[:2]
# Self attention
proposal_feat = proposal_feat.permute(1, 0, 2)
proposal_feat = self.attention_norm(self.attention(proposal_feat))
attn_feats = proposal_feat.permute(1, 0, 2)
# instance interactive
proposal_feat = attn_feats.reshape(-1, self.in_channels)
proposal_feat_iic = self.instance_interactive_conv(
proposal_feat, roi_feat)
proposal_feat = proposal_feat + self.instance_interactive_conv_dropout(
proposal_feat_iic)
obj_feat = self.instance_interactive_conv_norm(proposal_feat)
# FFN
obj_feat = self.ffn_norm(self.ffn(obj_feat))
cls_feat = obj_feat
reg_feat = obj_feat
for cls_layer in self.cls_fcs:
cls_feat = cls_layer(cls_feat)
for reg_layer in self.reg_fcs:
reg_feat = reg_layer(reg_feat)
cls_score = self.fc_cls(cls_feat).view(
N, num_proposals, self.num_classes
if self.loss_cls.use_sigmoid else self.num_classes + 1)
bbox_delta = self.fc_reg(reg_feat).view(N, num_proposals, 4)
return cls_score, bbox_delta, obj_feat.view(
N, num_proposals, self.in_channels), attn_feats
@force_fp32(apply_to=('cls_score', 'bbox_pred'))
def loss(self,
cls_score,
bbox_pred,
labels,
label_weights,
bbox_targets,
bbox_weights,
imgs_whwh=None,
reduction_override=None,
**kwargs):
""""Loss function of DIIHead, get loss of all images.
Args:
cls_score (Tensor): Classification prediction
results of all class, has shape
(batch_size * num_proposals_single_image, num_classes)
bbox_pred (Tensor): Regression prediction results,
has shape
(batch_size * num_proposals_single_image, 4), the last
dimension 4 represents [tl_x, tl_y, br_x, br_y].
labels (Tensor): Label of each proposals, has shape
(batch_size * num_proposals_single_image
label_weights (Tensor): Classification loss
weight of each proposals, has shape
(batch_size * num_proposals_single_image
bbox_targets (Tensor): Regression targets of each
proposals, has shape
(batch_size * num_proposals_single_image, 4),
the last dimension 4 represents
[tl_x, tl_y, br_x, br_y].
bbox_weights (Tensor): Regression loss weight of each
proposals's coordinate, has shape
(batch_size * num_proposals_single_image, 4),
imgs_whwh (Tensor): imgs_whwh (Tensor): Tensor with\
shape (batch_size, num_proposals, 4), the last
dimension means
[img_width,img_height, img_width, img_height].
reduction_override (str, optional): The reduction
method used to override the original reduction
method of the loss. Options are "none",
"mean" and "sum". Defaults to None,
Returns:
dict[str, Tensor]: Dictionary of loss components
"""
losses = dict()
bg_class_ind = self.num_classes
# note in spare rcnn num_gt == num_pos
pos_inds = (labels >= 0) & (labels < bg_class_ind)
num_pos = pos_inds.sum().float()
avg_factor = reduce_mean(num_pos)
if cls_score is not None:
if cls_score.numel() > 0:
losses['loss_cls'] = self.loss_cls(
cls_score,
labels,
label_weights,
avg_factor=avg_factor,
reduction_override=reduction_override)
losses['pos_acc'] = accuracy(cls_score[pos_inds],
labels[pos_inds])
if bbox_pred is not None:
# 0~self.num_classes-1 are FG, self.num_classes is BG
# do not perform bounding box regression for BG anymore.
if pos_inds.any():
pos_bbox_pred = bbox_pred.reshape(bbox_pred.size(0),
4)[pos_inds.type(torch.bool)]
imgs_whwh = imgs_whwh.reshape(bbox_pred.size(0),
4)[pos_inds.type(torch.bool)]
losses['loss_bbox'] = self.loss_bbox(
pos_bbox_pred / imgs_whwh,
bbox_targets[pos_inds.type(torch.bool)] / imgs_whwh,
bbox_weights[pos_inds.type(torch.bool)],
avg_factor=avg_factor)
losses['loss_iou'] = self.loss_iou(
pos_bbox_pred,
bbox_targets[pos_inds.type(torch.bool)],
bbox_weights[pos_inds.type(torch.bool)],
avg_factor=avg_factor)
else:
losses['loss_bbox'] = bbox_pred.sum() * 0
losses['loss_iou'] = bbox_pred.sum() * 0
return losses
def _get_target_single(self, pos_inds, neg_inds, pos_bboxes, neg_bboxes,
pos_gt_bboxes, pos_gt_labels, cfg):
"""Calculate the ground truth for proposals in the single image
according to the sampling results.
Almost the same as the implementation in `bbox_head`,
we add pos_inds and neg_inds to select positive and
negative samples instead of selecting the first num_pos
as positive samples.
Args:
pos_inds (Tensor): The length is equal to the
positive sample numbers contain all index
of the positive sample in the origin proposal set.
neg_inds (Tensor): The length is equal to the
negative sample numbers contain all index
of the negative sample in the origin proposal set.
pos_bboxes (Tensor): Contains all the positive boxes,
has shape (num_pos, 4), the last dimension 4
represents [tl_x, tl_y, br_x, br_y].
neg_bboxes (Tensor): Contains all the negative boxes,
has shape (num_neg, 4), the last dimension 4
represents [tl_x, tl_y, br_x, br_y].
pos_gt_bboxes (Tensor): Contains gt_boxes for
all positive samples, has shape (num_pos, 4),
the last dimension 4
represents [tl_x, tl_y, br_x, br_y].
pos_gt_labels (Tensor): Contains gt_labels for
all positive samples, has shape (num_pos, ).
cfg (obj:`ConfigDict`): `train_cfg` of R-CNN.
Returns:
Tuple[Tensor]: Ground truth for proposals in a single image.
Containing the following Tensors:
- labels(Tensor): Gt_labels for all proposals, has
shape (num_proposals,).
- label_weights(Tensor): Labels_weights for all proposals, has
shape (num_proposals,).
- bbox_targets(Tensor):Regression target for all proposals, has
shape (num_proposals, 4), the last dimension 4
represents [tl_x, tl_y, br_x, br_y].
- bbox_weights(Tensor):Regression weights for all proposals,
has shape (num_proposals, 4).
"""
num_pos = pos_bboxes.size(0)
num_neg = neg_bboxes.size(0)
num_samples = num_pos + num_neg
# original implementation uses new_zeros since BG are set to be 0
# now use empty & fill because BG cat_id = num_classes,
# FG cat_id = [0, num_classes-1]
labels = pos_bboxes.new_full((num_samples, ),
self.num_classes,
dtype=torch.long)
label_weights = pos_bboxes.new_zeros(num_samples)
bbox_targets = pos_bboxes.new_zeros(num_samples, 4)
bbox_weights = pos_bboxes.new_zeros(num_samples, 4)
if num_pos > 0:
labels[pos_inds] = pos_gt_labels
pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight
label_weights[pos_inds] = pos_weight
if not self.reg_decoded_bbox:
pos_bbox_targets = self.bbox_coder.encode(
pos_bboxes, pos_gt_bboxes)
else:
pos_bbox_targets = pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1
if num_neg > 0:
label_weights[neg_inds] = 1.0
return labels, label_weights, bbox_targets, bbox_weights
def get_targets(self,
sampling_results,
gt_bboxes,
gt_labels,
rcnn_train_cfg,
concat=True):
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.
Almost the same as the implementation in bbox_head, we passed
additional parameters pos_inds_list and neg_inds_list to
`_get_target_single` function.
Args:
sampling_results (List[obj:SamplingResults]): Assign results of
all images in a batch after sampling.
gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,
each tensor has shape (num_gt, 4), the last dimension 4
represents [tl_x, tl_y, br_x, br_y].
gt_labels (list[Tensor]): Gt_labels of all images in a batch,
each tensor has shape (num_gt,).
rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN.
concat (bool): Whether to concatenate the results of all
the images in a single batch.
Returns:
Tuple[Tensor]: Ground truth for proposals in a single image.
Containing the following list of Tensors:
- labels (list[Tensor],Tensor): Gt_labels for all
proposals in a batch, each tensor in list has
shape (num_proposals,) when `concat=False`, otherwise just
a single tensor has shape (num_all_proposals,).
- label_weights (list[Tensor]): Labels_weights for
all proposals in a batch, each tensor in list has shape
(num_proposals,) when `concat=False`, otherwise just a
single tensor has shape (num_all_proposals,).
- bbox_targets (list[Tensor],Tensor): Regression target
for all proposals in a batch, each tensor in list has
shape (num_proposals, 4) when `concat=False`, otherwise
just a single tensor has shape (num_all_proposals, 4),
the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
- bbox_weights (list[tensor],Tensor): Regression weights for
all proposals in a batch, each tensor in list has shape
(num_proposals, 4) when `concat=False`, otherwise just a
single tensor has shape (num_all_proposals, 4).
"""
pos_inds_list = [res.pos_inds for res in sampling_results]
neg_inds_list = [res.neg_inds for res in sampling_results]
pos_bboxes_list = [res.pos_bboxes for res in sampling_results]
neg_bboxes_list = [res.neg_bboxes for res in sampling_results]
pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results]
pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results]
labels, label_weights, bbox_targets, bbox_weights = multi_apply(
self._get_target_single,
pos_inds_list,
neg_inds_list,
pos_bboxes_list,
neg_bboxes_list,
pos_gt_bboxes_list,
pos_gt_labels_list,
cfg=rcnn_train_cfg)
if concat:
labels = torch.cat(labels, 0)
label_weights = torch.cat(label_weights, 0)
bbox_targets = torch.cat(bbox_targets, 0)
bbox_weights = torch.cat(bbox_weights, 0)
return labels, label_weights, bbox_targets, bbox_weights
|