File size: 5,733 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList

from mmdet.models.backbones.resnet import Bottleneck
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead


class BasicResBlock(BaseModule):
    """Basic residual block.

    This block is a little different from the block in the ResNet backbone.
    The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock.

    Args:
        in_channels (int): Channels of the input feature map.
        out_channels (int): Channels of the output feature map.
        conv_cfg (dict): The config dict for convolution layers.
        norm_cfg (dict): The config dict for normalization layers.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 init_cfg=None):
        super(BasicResBlock, self).__init__(init_cfg)

        # main path
        self.conv1 = ConvModule(
            in_channels,
            in_channels,
            kernel_size=3,
            padding=1,
            bias=False,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg)
        self.conv2 = ConvModule(
            in_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

        # identity path
        self.conv_identity = ConvModule(
            in_channels,
            out_channels,
            kernel_size=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        identity = x

        x = self.conv1(x)
        x = self.conv2(x)

        identity = self.conv_identity(identity)
        out = x + identity

        out = self.relu(out)
        return out


@HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
    r"""Bbox head used in Double-Head R-CNN

    .. code-block:: none

                                          /-> cls
                      /-> shared convs ->
                                          \-> reg
        roi features
                                          /-> cls
                      \-> shared fc    ->
                                          \-> reg
    """  # noqa: W605

    def __init__(self,
                 num_convs=0,
                 num_fcs=0,
                 conv_out_channels=1024,
                 fc_out_channels=1024,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 init_cfg=dict(
                     type='Normal',
                     override=[
                         dict(type='Normal', name='fc_cls', std=0.01),
                         dict(type='Normal', name='fc_reg', std=0.001),
                         dict(
                             type='Xavier',
                             name='fc_branch',
                             distribution='uniform')
                     ]),
                 **kwargs):
        kwargs.setdefault('with_avg_pool', True)
        super(DoubleConvFCBBoxHead, self).__init__(init_cfg=init_cfg, **kwargs)
        assert self.with_avg_pool
        assert num_convs > 0
        assert num_fcs > 0
        self.num_convs = num_convs
        self.num_fcs = num_fcs
        self.conv_out_channels = conv_out_channels
        self.fc_out_channels = fc_out_channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        # increase the channel of input features
        self.res_block = BasicResBlock(self.in_channels,
                                       self.conv_out_channels)

        # add conv heads
        self.conv_branch = self._add_conv_branch()
        # add fc heads
        self.fc_branch = self._add_fc_branch()

        out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes
        self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg)

        self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes + 1)
        self.relu = nn.ReLU(inplace=True)

    def _add_conv_branch(self):
        """Add the fc branch which consists of a sequential of conv layers."""
        branch_convs = ModuleList()
        for i in range(self.num_convs):
            branch_convs.append(
                Bottleneck(
                    inplanes=self.conv_out_channels,
                    planes=self.conv_out_channels // 4,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        return branch_convs

    def _add_fc_branch(self):
        """Add the fc branch which consists of a sequential of fc layers."""
        branch_fcs = ModuleList()
        for i in range(self.num_fcs):
            fc_in_channels = (
                self.in_channels *
                self.roi_feat_area if i == 0 else self.fc_out_channels)
            branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels))
        return branch_fcs

    def forward(self, x_cls, x_reg):
        # conv head
        x_conv = self.res_block(x_reg)

        for conv in self.conv_branch:
            x_conv = conv(x_conv)

        if self.with_avg_pool:
            x_conv = self.avg_pool(x_conv)

        x_conv = x_conv.view(x_conv.size(0), -1)
        bbox_pred = self.fc_reg(x_conv)

        # fc head
        x_fc = x_cls.view(x_cls.size(0), -1)
        for fc in self.fc_branch:
            x_fc = self.relu(fc(x_fc))

        cls_score = self.fc_cls(x_fc)

        return cls_score, bbox_pred