Spaces:
Runtime error
Runtime error
File size: 27,668 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
from mmcv.runner import ModuleList
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, build_assigner,
build_sampler, merge_aug_bboxes, merge_aug_masks,
multiclass_nms)
from ..builder import HEADS, build_head, build_roi_extractor
from .base_roi_head import BaseRoIHead
from .test_mixins import BBoxTestMixin, MaskTestMixin
@HEADS.register_module()
class CascadeRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
"""Cascade roi head including one bbox head and one mask head.
https://arxiv.org/abs/1712.00726
"""
def __init__(self,
num_stages,
stage_loss_weights,
bbox_roi_extractor=None,
bbox_head=None,
mask_roi_extractor=None,
mask_head=None,
shared_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
init_cfg=None):
assert bbox_roi_extractor is not None
assert bbox_head is not None
assert shared_head is None, \
'Shared head is not supported in Cascade RCNN anymore'
self.num_stages = num_stages
self.stage_loss_weights = stage_loss_weights
super(CascadeRoIHead, self).__init__(
bbox_roi_extractor=bbox_roi_extractor,
bbox_head=bbox_head,
mask_roi_extractor=mask_roi_extractor,
mask_head=mask_head,
shared_head=shared_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
init_cfg=init_cfg)
def init_bbox_head(self, bbox_roi_extractor, bbox_head):
"""Initialize box head and box roi extractor.
Args:
bbox_roi_extractor (dict): Config of box roi extractor.
bbox_head (dict): Config of box in box head.
"""
self.bbox_roi_extractor = ModuleList()
self.bbox_head = ModuleList()
if not isinstance(bbox_roi_extractor, list):
bbox_roi_extractor = [
bbox_roi_extractor for _ in range(self.num_stages)
]
if not isinstance(bbox_head, list):
bbox_head = [bbox_head for _ in range(self.num_stages)]
assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
self.bbox_roi_extractor.append(build_roi_extractor(roi_extractor))
self.bbox_head.append(build_head(head))
def init_mask_head(self, mask_roi_extractor, mask_head):
"""Initialize mask head and mask roi extractor.
Args:
mask_roi_extractor (dict): Config of mask roi extractor.
mask_head (dict): Config of mask in mask head.
"""
self.mask_head = nn.ModuleList()
if not isinstance(mask_head, list):
mask_head = [mask_head for _ in range(self.num_stages)]
assert len(mask_head) == self.num_stages
for head in mask_head:
self.mask_head.append(build_head(head))
if mask_roi_extractor is not None:
self.share_roi_extractor = False
self.mask_roi_extractor = ModuleList()
if not isinstance(mask_roi_extractor, list):
mask_roi_extractor = [
mask_roi_extractor for _ in range(self.num_stages)
]
assert len(mask_roi_extractor) == self.num_stages
for roi_extractor in mask_roi_extractor:
self.mask_roi_extractor.append(
build_roi_extractor(roi_extractor))
else:
self.share_roi_extractor = True
self.mask_roi_extractor = self.bbox_roi_extractor
def init_assigner_sampler(self):
"""Initialize assigner and sampler for each stage."""
self.bbox_assigner = []
self.bbox_sampler = []
if self.train_cfg is not None:
for idx, rcnn_train_cfg in enumerate(self.train_cfg):
self.bbox_assigner.append(
build_assigner(rcnn_train_cfg.assigner))
self.current_stage = idx
self.bbox_sampler.append(
build_sampler(rcnn_train_cfg.sampler, context=self))
def forward_dummy(self, x, proposals):
"""Dummy forward function."""
# bbox head
outs = ()
rois = bbox2roi([proposals])
if self.with_bbox:
for i in range(self.num_stages):
bbox_results = self._bbox_forward(i, x, rois)
outs = outs + (bbox_results['cls_score'],
bbox_results['bbox_pred'])
# mask heads
if self.with_mask:
mask_rois = rois[:100]
for i in range(self.num_stages):
mask_results = self._mask_forward(i, x, mask_rois)
outs = outs + (mask_results['mask_pred'], )
return outs
def _bbox_forward(self, stage, x, rois):
"""Box head forward function used in both training and testing."""
bbox_roi_extractor = self.bbox_roi_extractor[stage]
bbox_head = self.bbox_head[stage]
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
rois)
# do not support caffe_c4 model anymore
cls_score, bbox_pred = bbox_head(bbox_feats)
bbox_results = dict(
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
return bbox_results
def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes,
gt_labels, rcnn_train_cfg):
"""Run forward function and calculate loss for box head in training."""
rois = bbox2roi([res.bboxes for res in sampling_results])
bbox_results = self._bbox_forward(stage, x, rois)
bbox_targets = self.bbox_head[stage].get_targets(
sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg)
loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'],
bbox_results['bbox_pred'], rois,
*bbox_targets)
bbox_results.update(
loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets)
return bbox_results
def _mask_forward(self, stage, x, rois):
"""Mask head forward function used in both training and testing."""
mask_roi_extractor = self.mask_roi_extractor[stage]
mask_head = self.mask_head[stage]
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
rois)
# do not support caffe_c4 model anymore
mask_pred = mask_head(mask_feats)
mask_results = dict(mask_pred=mask_pred)
return mask_results
def _mask_forward_train(self,
stage,
x,
sampling_results,
gt_masks,
rcnn_train_cfg,
bbox_feats=None):
"""Run forward function and calculate loss for mask head in
training."""
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
mask_results = self._mask_forward(stage, x, pos_rois)
mask_targets = self.mask_head[stage].get_targets(
sampling_results, gt_masks, rcnn_train_cfg)
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'],
mask_targets, pos_labels)
mask_results.update(loss_mask=loss_mask)
return mask_results
def forward_train(self,
x,
img_metas,
proposal_list,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None):
"""
Args:
x (list[Tensor]): list of multi-level img features.
img_metas (list[dict]): list of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmdet/datasets/pipelines/formatting.py:Collect`.
proposals (list[Tensors]): list of region proposals.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
gt_masks (None | Tensor) : true segmentation masks for each box
used if the architecture supports a segmentation task.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
losses = dict()
for i in range(self.num_stages):
self.current_stage = i
rcnn_train_cfg = self.train_cfg[i]
lw = self.stage_loss_weights[i]
# assign gts and sample proposals
sampling_results = []
if self.with_bbox or self.with_mask:
bbox_assigner = self.bbox_assigner[i]
bbox_sampler = self.bbox_sampler[i]
num_imgs = len(img_metas)
if gt_bboxes_ignore is None:
gt_bboxes_ignore = [None for _ in range(num_imgs)]
for j in range(num_imgs):
assign_result = bbox_assigner.assign(
proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j],
gt_labels[j])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[j],
gt_bboxes[j],
gt_labels[j],
feats=[lvl_feat[j][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
bbox_results = self._bbox_forward_train(i, x, sampling_results,
gt_bboxes, gt_labels,
rcnn_train_cfg)
for name, value in bbox_results['loss_bbox'].items():
losses[f's{i}.{name}'] = (
value * lw if 'loss' in name else value)
# mask head forward and loss
if self.with_mask:
mask_results = self._mask_forward_train(
i, x, sampling_results, gt_masks, rcnn_train_cfg,
bbox_results['bbox_feats'])
for name, value in mask_results['loss_mask'].items():
losses[f's{i}.{name}'] = (
value * lw if 'loss' in name else value)
# refine bboxes
if i < self.num_stages - 1:
pos_is_gts = [res.pos_is_gt for res in sampling_results]
# bbox_targets is a tuple
roi_labels = bbox_results['bbox_targets'][0]
with torch.no_grad():
cls_score = bbox_results['cls_score']
if self.bbox_head[i].custom_activation:
cls_score = self.bbox_head[i].loss_cls.get_activation(
cls_score)
# Empty proposal.
if cls_score.numel() == 0:
break
roi_labels = torch.where(
roi_labels == self.bbox_head[i].num_classes,
cls_score[:, :-1].argmax(1), roi_labels)
proposal_list = self.bbox_head[i].refine_bboxes(
bbox_results['rois'], roi_labels,
bbox_results['bbox_pred'], pos_is_gts, img_metas)
return losses
def simple_test(self, x, proposal_list, img_metas, rescale=False):
"""Test without augmentation.
Args:
x (tuple[Tensor]): Features from upstream network. Each
has shape (batch_size, c, h, w).
proposal_list (list(Tensor)): Proposals from rpn head.
Each has shape (num_proposals, 5), last dimension
5 represent (x1, y1, x2, y2, score).
img_metas (list[dict]): Meta information of images.
rescale (bool): Whether to rescale the results to
the original image. Default: True.
Returns:
list[list[np.ndarray]] or list[tuple]: When no mask branch,
it is bbox results of each image and classes with type
`list[list[np.ndarray]]`. The outer list
corresponds to each image. The inner list
corresponds to each class. When the model has mask branch,
it contains bbox results and mask results.
The outer list corresponds to each image, and first element
of tuple is bbox results, second element is mask results.
"""
assert self.with_bbox, 'Bbox head must be implemented.'
num_imgs = len(proposal_list)
img_shapes = tuple(meta['img_shape'] for meta in img_metas)
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
# "ms" in variable names means multi-stage
ms_bbox_result = {}
ms_segm_result = {}
ms_scores = []
rcnn_test_cfg = self.test_cfg
rois = bbox2roi(proposal_list)
if rois.shape[0] == 0:
# There is no proposal in the whole batch
bbox_results = [[
np.zeros((0, 5), dtype=np.float32)
for _ in range(self.bbox_head[-1].num_classes)
]] * num_imgs
if self.with_mask:
mask_classes = self.mask_head[-1].num_classes
segm_results = [[[] for _ in range(mask_classes)]
for _ in range(num_imgs)]
results = list(zip(bbox_results, segm_results))
else:
results = bbox_results
return results
for i in range(self.num_stages):
bbox_results = self._bbox_forward(i, x, rois)
# split batch bbox prediction back to each image
cls_score = bbox_results['cls_score']
bbox_pred = bbox_results['bbox_pred']
num_proposals_per_img = tuple(
len(proposals) for proposals in proposal_list)
rois = rois.split(num_proposals_per_img, 0)
cls_score = cls_score.split(num_proposals_per_img, 0)
if isinstance(bbox_pred, torch.Tensor):
bbox_pred = bbox_pred.split(num_proposals_per_img, 0)
else:
bbox_pred = self.bbox_head[i].bbox_pred_split(
bbox_pred, num_proposals_per_img)
ms_scores.append(cls_score)
if i < self.num_stages - 1:
if self.bbox_head[i].custom_activation:
cls_score = [
self.bbox_head[i].loss_cls.get_activation(s)
for s in cls_score
]
refine_rois_list = []
for j in range(num_imgs):
if rois[j].shape[0] > 0:
bbox_label = cls_score[j][:, :-1].argmax(dim=1)
refined_rois = self.bbox_head[i].regress_by_class(
rois[j], bbox_label, bbox_pred[j], img_metas[j])
refine_rois_list.append(refined_rois)
rois = torch.cat(refine_rois_list)
# average scores of each image by stages
cls_score = [
sum([score[i] for score in ms_scores]) / float(len(ms_scores))
for i in range(num_imgs)
]
# apply bbox post-processing to each image individually
det_bboxes = []
det_labels = []
for i in range(num_imgs):
det_bbox, det_label = self.bbox_head[-1].get_bboxes(
rois[i],
cls_score[i],
bbox_pred[i],
img_shapes[i],
scale_factors[i],
rescale=rescale,
cfg=rcnn_test_cfg)
det_bboxes.append(det_bbox)
det_labels.append(det_label)
bbox_results = [
bbox2result(det_bboxes[i], det_labels[i],
self.bbox_head[-1].num_classes)
for i in range(num_imgs)
]
ms_bbox_result['ensemble'] = bbox_results
if self.with_mask:
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
mask_classes = self.mask_head[-1].num_classes
segm_results = [[[] for _ in range(mask_classes)]
for _ in range(num_imgs)]
else:
if rescale and not isinstance(scale_factors[0], float):
scale_factors = [
torch.from_numpy(scale_factor).to(det_bboxes[0].device)
for scale_factor in scale_factors
]
_bboxes = [
det_bboxes[i][:, :4] *
scale_factors[i] if rescale else det_bboxes[i][:, :4]
for i in range(len(det_bboxes))
]
mask_rois = bbox2roi(_bboxes)
num_mask_rois_per_img = tuple(
_bbox.size(0) for _bbox in _bboxes)
aug_masks = []
for i in range(self.num_stages):
mask_results = self._mask_forward(i, x, mask_rois)
mask_pred = mask_results['mask_pred']
# split batch mask prediction back to each image
mask_pred = mask_pred.split(num_mask_rois_per_img, 0)
aug_masks.append([
m.sigmoid().cpu().detach().numpy() for m in mask_pred
])
# apply mask post-processing to each image individually
segm_results = []
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
segm_results.append(
[[]
for _ in range(self.mask_head[-1].num_classes)])
else:
aug_mask = [mask[i] for mask in aug_masks]
merged_masks = merge_aug_masks(
aug_mask, [[img_metas[i]]] * self.num_stages,
rcnn_test_cfg)
segm_result = self.mask_head[-1].get_seg_masks(
merged_masks, _bboxes[i], det_labels[i],
rcnn_test_cfg, ori_shapes[i], scale_factors[i],
rescale)
segm_results.append(segm_result)
ms_segm_result['ensemble'] = segm_results
if self.with_mask:
results = list(
zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble']))
else:
results = ms_bbox_result['ensemble']
return results
def aug_test(self, features, proposal_list, img_metas, rescale=False):
"""Test with augmentations.
If rescale is False, then returned bboxes and masks will fit the scale
of imgs[0].
"""
rcnn_test_cfg = self.test_cfg
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(features, img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip, flip_direction)
# "ms" in variable names means multi-stage
ms_scores = []
rois = bbox2roi([proposals])
if rois.shape[0] == 0:
# There is no proposal in the single image
aug_bboxes.append(rois.new_zeros(0, 4))
aug_scores.append(rois.new_zeros(0, 1))
continue
for i in range(self.num_stages):
bbox_results = self._bbox_forward(i, x, rois)
ms_scores.append(bbox_results['cls_score'])
if i < self.num_stages - 1:
cls_score = bbox_results['cls_score']
if self.bbox_head[i].custom_activation:
cls_score = self.bbox_head[i].loss_cls.get_activation(
cls_score)
bbox_label = cls_score[:, :-1].argmax(dim=1)
rois = self.bbox_head[i].regress_by_class(
rois, bbox_label, bbox_results['bbox_pred'],
img_meta[0])
cls_score = sum(ms_scores) / float(len(ms_scores))
bboxes, scores = self.bbox_head[-1].get_bboxes(
rois,
cls_score,
bbox_results['bbox_pred'],
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms,
rcnn_test_cfg.max_per_img)
bbox_result = bbox2result(det_bboxes, det_labels,
self.bbox_head[-1].num_classes)
if self.with_mask:
if det_bboxes.shape[0] == 0:
segm_result = [[]
for _ in range(self.mask_head[-1].num_classes)]
else:
aug_masks = []
aug_img_metas = []
for x, img_meta in zip(features, img_metas):
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
scale_factor, flip, flip_direction)
mask_rois = bbox2roi([_bboxes])
for i in range(self.num_stages):
mask_results = self._mask_forward(i, x, mask_rois)
aug_masks.append(
mask_results['mask_pred'].sigmoid().cpu().numpy())
aug_img_metas.append(img_meta)
merged_masks = merge_aug_masks(aug_masks, aug_img_metas,
self.test_cfg)
ori_shape = img_metas[0][0]['ori_shape']
dummy_scale_factor = np.ones(4)
segm_result = self.mask_head[-1].get_seg_masks(
merged_masks,
det_bboxes,
det_labels,
rcnn_test_cfg,
ori_shape,
scale_factor=dummy_scale_factor,
rescale=False)
return [(bbox_result, segm_result)]
else:
return [bbox_result]
def onnx_export(self, x, proposals, img_metas):
assert self.with_bbox, 'Bbox head must be implemented.'
assert proposals.shape[0] == 1, 'Only support one input image ' \
'while in exporting to ONNX'
# remove the scores
rois = proposals[..., :-1]
batch_size = rois.shape[0]
num_proposals_per_img = rois.shape[1]
# Eliminate the batch dimension
rois = rois.view(-1, 4)
# add dummy batch index
rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois], dim=-1)
max_shape = img_metas[0]['img_shape_for_onnx']
ms_scores = []
rcnn_test_cfg = self.test_cfg
for i in range(self.num_stages):
bbox_results = self._bbox_forward(i, x, rois)
cls_score = bbox_results['cls_score']
bbox_pred = bbox_results['bbox_pred']
# Recover the batch dimension
rois = rois.reshape(batch_size, num_proposals_per_img,
rois.size(-1))
cls_score = cls_score.reshape(batch_size, num_proposals_per_img,
cls_score.size(-1))
bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4)
ms_scores.append(cls_score)
if i < self.num_stages - 1:
assert self.bbox_head[i].reg_class_agnostic
new_rois = self.bbox_head[i].bbox_coder.decode(
rois[..., 1:], bbox_pred, max_shape=max_shape)
rois = new_rois.reshape(-1, new_rois.shape[-1])
# add dummy batch index
rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois],
dim=-1)
cls_score = sum(ms_scores) / float(len(ms_scores))
bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4)
rois = rois.reshape(batch_size, num_proposals_per_img, -1)
det_bboxes, det_labels = self.bbox_head[-1].onnx_export(
rois, cls_score, bbox_pred, max_shape, cfg=rcnn_test_cfg)
if not self.with_mask:
return det_bboxes, det_labels
else:
batch_index = torch.arange(
det_bboxes.size(0),
device=det_bboxes.device).float().view(-1, 1, 1).expand(
det_bboxes.size(0), det_bboxes.size(1), 1)
rois = det_bboxes[..., :4]
mask_rois = torch.cat([batch_index, rois], dim=-1)
mask_rois = mask_rois.view(-1, 5)
aug_masks = []
for i in range(self.num_stages):
mask_results = self._mask_forward(i, x, mask_rois)
mask_pred = mask_results['mask_pred']
aug_masks.append(mask_pred)
max_shape = img_metas[0]['img_shape_for_onnx']
# calculate the mean of masks from several stage
mask_pred = sum(aug_masks) / len(aug_masks)
segm_results = self.mask_head[-1].onnx_export(
mask_pred, rois.reshape(-1, 4), det_labels.reshape(-1),
self.test_cfg, max_shape)
segm_results = segm_results.reshape(batch_size,
det_bboxes.shape[1],
max_shape[0], max_shape[1])
return det_bboxes, det_labels, segm_results
|