File size: 6,656 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.core import bbox2roi
from ..builder import HEADS
from ..losses.pisa_loss import carl_loss, isr_p
from .standard_roi_head import StandardRoIHead


@HEADS.register_module()
class PISARoIHead(StandardRoIHead):
    r"""The RoI head for `Prime Sample Attention in Object Detection
    <https://arxiv.org/abs/1904.04821>`_."""

    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None):
        """Forward function for training.

        Args:
            x (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
            proposals (list[Tensors]): List of region proposals.
            gt_bboxes (list[Tensor]): Each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): Class indices corresponding to each box
            gt_bboxes_ignore (list[Tensor], optional): Specify which bounding
                boxes can be ignored when computing the loss.
            gt_masks (None | Tensor) : True segmentation masks for each box
                used if the architecture supports a segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # assign gts and sample proposals
        if self.with_bbox or self.with_mask:
            num_imgs = len(img_metas)
            if gt_bboxes_ignore is None:
                gt_bboxes_ignore = [None for _ in range(num_imgs)]
            sampling_results = []
            neg_label_weights = []
            for i in range(num_imgs):
                assign_result = self.bbox_assigner.assign(
                    proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i],
                    gt_labels[i])
                sampling_result = self.bbox_sampler.sample(
                    assign_result,
                    proposal_list[i],
                    gt_bboxes[i],
                    gt_labels[i],
                    feats=[lvl_feat[i][None] for lvl_feat in x])
                # neg label weight is obtained by sampling when using ISR-N
                neg_label_weight = None
                if isinstance(sampling_result, tuple):
                    sampling_result, neg_label_weight = sampling_result
                sampling_results.append(sampling_result)
                neg_label_weights.append(neg_label_weight)

        losses = dict()
        # bbox head forward and loss
        if self.with_bbox:
            bbox_results = self._bbox_forward_train(
                x,
                sampling_results,
                gt_bboxes,
                gt_labels,
                img_metas,
                neg_label_weights=neg_label_weights)
            losses.update(bbox_results['loss_bbox'])

        # mask head forward and loss
        if self.with_mask:
            mask_results = self._mask_forward_train(x, sampling_results,
                                                    bbox_results['bbox_feats'],
                                                    gt_masks, img_metas)
            losses.update(mask_results['loss_mask'])

        return losses

    def _bbox_forward(self, x, rois):
        """Box forward function used in both training and testing."""
        # TODO: a more flexible way to decide which feature maps to use
        bbox_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)
        if self.with_shared_head:
            bbox_feats = self.shared_head(bbox_feats)
        cls_score, bbox_pred = self.bbox_head(bbox_feats)

        bbox_results = dict(
            cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
        return bbox_results

    def _bbox_forward_train(self,
                            x,
                            sampling_results,
                            gt_bboxes,
                            gt_labels,
                            img_metas,
                            neg_label_weights=None):
        """Run forward function and calculate loss for box head in training."""
        rois = bbox2roi([res.bboxes for res in sampling_results])

        bbox_results = self._bbox_forward(x, rois)

        bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes,
                                                  gt_labels, self.train_cfg)

        # neg_label_weights obtained by sampler is image-wise, mapping back to
        # the corresponding location in label weights
        if neg_label_weights[0] is not None:
            label_weights = bbox_targets[1]
            cur_num_rois = 0
            for i in range(len(sampling_results)):
                num_pos = sampling_results[i].pos_inds.size(0)
                num_neg = sampling_results[i].neg_inds.size(0)
                label_weights[cur_num_rois + num_pos:cur_num_rois + num_pos +
                              num_neg] = neg_label_weights[i]
                cur_num_rois += num_pos + num_neg

        cls_score = bbox_results['cls_score']
        bbox_pred = bbox_results['bbox_pred']

        # Apply ISR-P
        isr_cfg = self.train_cfg.get('isr', None)
        if isr_cfg is not None:
            bbox_targets = isr_p(
                cls_score,
                bbox_pred,
                bbox_targets,
                rois,
                sampling_results,
                self.bbox_head.loss_cls,
                self.bbox_head.bbox_coder,
                **isr_cfg,
                num_class=self.bbox_head.num_classes)
        loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, rois,
                                        *bbox_targets)

        # Add CARL Loss
        carl_cfg = self.train_cfg.get('carl', None)
        if carl_cfg is not None:
            loss_carl = carl_loss(
                cls_score,
                bbox_targets[0],
                bbox_pred,
                bbox_targets[2],
                self.bbox_head.loss_bbox,
                **carl_cfg,
                num_class=self.bbox_head.num_classes)
            loss_bbox.update(loss_carl)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results