File size: 2,587 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
from mmcv.runner import BaseModule, auto_fp16

from mmdet.models.backbones import ResNet
from mmdet.models.builder import SHARED_HEADS
from mmdet.models.utils import ResLayer as _ResLayer


@SHARED_HEADS.register_module()
class ResLayer(BaseModule):

    def __init__(self,
                 depth,
                 stage=3,
                 stride=2,
                 dilation=1,
                 style='pytorch',
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=True,
                 with_cp=False,
                 dcn=None,
                 pretrained=None,
                 init_cfg=None):
        super(ResLayer, self).__init__(init_cfg)

        self.norm_eval = norm_eval
        self.norm_cfg = norm_cfg
        self.stage = stage
        self.fp16_enabled = False
        block, stage_blocks = ResNet.arch_settings[depth]
        stage_block = stage_blocks[stage]
        planes = 64 * 2**stage
        inplanes = 64 * 2**(stage - 1) * block.expansion

        res_layer = _ResLayer(
            block,
            inplanes,
            planes,
            stage_block,
            stride=stride,
            dilation=dilation,
            style=style,
            with_cp=with_cp,
            norm_cfg=self.norm_cfg,
            dcn=dcn)
        self.add_module(f'layer{stage + 1}', res_layer)

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is a deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

    @auto_fp16()
    def forward(self, x):
        res_layer = getattr(self, f'layer{self.stage + 1}')
        out = res_layer(x)
        return out

    def train(self, mode=True):
        super(ResLayer, self).train(mode)
        if self.norm_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()