File size: 17,132 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
from ..builder import HEADS, build_head, build_roi_extractor
from .base_roi_head import BaseRoIHead
from .test_mixins import BBoxTestMixin, MaskTestMixin


@HEADS.register_module()
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
    """Simplest base roi head including one bbox head and one mask head."""

    def init_assigner_sampler(self):
        """Initialize assigner and sampler."""
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
            self.bbox_sampler = build_sampler(
                self.train_cfg.sampler, context=self)

    def init_bbox_head(self, bbox_roi_extractor, bbox_head):
        """Initialize ``bbox_head``"""
        self.bbox_roi_extractor = build_roi_extractor(bbox_roi_extractor)
        self.bbox_head = build_head(bbox_head)

    def init_mask_head(self, mask_roi_extractor, mask_head):
        """Initialize ``mask_head``"""
        if mask_roi_extractor is not None:
            self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor)
            self.share_roi_extractor = False
        else:
            self.share_roi_extractor = True
            self.mask_roi_extractor = self.bbox_roi_extractor
        self.mask_head = build_head(mask_head)

    def forward_dummy(self, x, proposals):
        """Dummy forward function."""
        # bbox head
        outs = ()
        rois = bbox2roi([proposals])
        if self.with_bbox:
            bbox_results = self._bbox_forward(x, rois)
            outs = outs + (bbox_results['cls_score'],
                           bbox_results['bbox_pred'])
        # mask head
        if self.with_mask:
            mask_rois = rois[:100]
            mask_results = self._mask_forward(x, mask_rois)
            outs = outs + (mask_results['mask_pred'], )
        return outs

    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      **kwargs):
        """
        Args:
            x (list[Tensor]): list of multi-level img features.
            img_metas (list[dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
            proposals (list[Tensors]): list of region proposals.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
            gt_masks (None | Tensor) : true segmentation masks for each box
                used if the architecture supports a segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # assign gts and sample proposals
        if self.with_bbox or self.with_mask:
            num_imgs = len(img_metas)
            if gt_bboxes_ignore is None:
                gt_bboxes_ignore = [None for _ in range(num_imgs)]
            sampling_results = []
            for i in range(num_imgs):
                assign_result = self.bbox_assigner.assign(
                    proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i],
                    gt_labels[i])
                sampling_result = self.bbox_sampler.sample(
                    assign_result,
                    proposal_list[i],
                    gt_bboxes[i],
                    gt_labels[i],
                    feats=[lvl_feat[i][None] for lvl_feat in x])
                sampling_results.append(sampling_result)

        losses = dict()
        # bbox head forward and loss
        if self.with_bbox:
            bbox_results = self._bbox_forward_train(x, sampling_results,
                                                    gt_bboxes, gt_labels,
                                                    img_metas)
            losses.update(bbox_results['loss_bbox'])

        # mask head forward and loss
        if self.with_mask:
            mask_results = self._mask_forward_train(x, sampling_results,
                                                    bbox_results['bbox_feats'],
                                                    gt_masks, img_metas)
            losses.update(mask_results['loss_mask'])

        return losses

    def _bbox_forward(self, x, rois):
        """Box head forward function used in both training and testing."""
        # TODO: a more flexible way to decide which feature maps to use
        bbox_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)
        if self.with_shared_head:
            bbox_feats = self.shared_head(bbox_feats)
        cls_score, bbox_pred = self.bbox_head(bbox_feats)

        bbox_results = dict(
            cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
        return bbox_results

    def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
                            img_metas):
        """Run forward function and calculate loss for box head in training."""
        rois = bbox2roi([res.bboxes for res in sampling_results])
        bbox_results = self._bbox_forward(x, rois)

        bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes,
                                                  gt_labels, self.train_cfg)
        loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
                                        bbox_results['bbox_pred'], rois,
                                        *bbox_targets)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results

    def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
                            img_metas):
        """Run forward function and calculate loss for mask head in
        training."""
        if not self.share_roi_extractor:
            pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
            mask_results = self._mask_forward(x, pos_rois)
        else:
            pos_inds = []
            device = bbox_feats.device
            for res in sampling_results:
                pos_inds.append(
                    torch.ones(
                        res.pos_bboxes.shape[0],
                        device=device,
                        dtype=torch.uint8))
                pos_inds.append(
                    torch.zeros(
                        res.neg_bboxes.shape[0],
                        device=device,
                        dtype=torch.uint8))
            pos_inds = torch.cat(pos_inds)

            mask_results = self._mask_forward(
                x, pos_inds=pos_inds, bbox_feats=bbox_feats)

        mask_targets = self.mask_head.get_targets(sampling_results, gt_masks,
                                                  self.train_cfg)
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        loss_mask = self.mask_head.loss(mask_results['mask_pred'],
                                        mask_targets, pos_labels)

        mask_results.update(loss_mask=loss_mask, mask_targets=mask_targets)
        return mask_results

    def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None):
        """Mask head forward function used in both training and testing."""
        assert ((rois is not None) ^
                (pos_inds is not None and bbox_feats is not None))
        if rois is not None:
            mask_feats = self.mask_roi_extractor(
                x[:self.mask_roi_extractor.num_inputs], rois)
            if self.with_shared_head:
                mask_feats = self.shared_head(mask_feats)
        else:
            assert bbox_feats is not None
            mask_feats = bbox_feats[pos_inds]

        mask_pred = self.mask_head(mask_feats)
        mask_results = dict(mask_pred=mask_pred, mask_feats=mask_feats)
        return mask_results

    async def async_simple_test(self,
                                x,
                                proposal_list,
                                img_metas,
                                proposals=None,
                                rescale=False):
        """Async test without augmentation."""
        assert self.with_bbox, 'Bbox head must be implemented.'

        det_bboxes, det_labels = await self.async_test_bboxes(
            x, img_metas, proposal_list, self.test_cfg, rescale=rescale)
        bbox_results = bbox2result(det_bboxes, det_labels,
                                   self.bbox_head.num_classes)
        if not self.with_mask:
            return bbox_results
        else:
            segm_results = await self.async_test_mask(
                x,
                img_metas,
                det_bboxes,
                det_labels,
                rescale=rescale,
                mask_test_cfg=self.test_cfg.get('mask'))
            return bbox_results, segm_results

    def simple_test(self,
                    x,
                    proposal_list,
                    img_metas,
                    proposals=None,
                    rescale=False):
        """Test without augmentation.

        Args:
            x (tuple[Tensor]): Features from upstream network. Each
                has shape (batch_size, c, h, w).
            proposal_list (list(Tensor)): Proposals from rpn head.
                Each has shape (num_proposals, 5), last dimension
                5 represent (x1, y1, x2, y2, score).
            img_metas (list[dict]): Meta information of images.
            rescale (bool): Whether to rescale the results to
                the original image. Default: True.

        Returns:
            list[list[np.ndarray]] or list[tuple]: When no mask branch,
            it is bbox results of each image and classes with type
            `list[list[np.ndarray]]`. The outer list
            corresponds to each image. The inner list
            corresponds to each class. When the model has mask branch,
            it contains bbox results and mask results.
            The outer list corresponds to each image, and first element
            of tuple is bbox results, second element is mask results.
        """
        assert self.with_bbox, 'Bbox head must be implemented.'

        det_bboxes, det_labels = self.simple_test_bboxes(
            x, img_metas, proposal_list, self.test_cfg, rescale=rescale)

        bbox_results = [
            bbox2result(det_bboxes[i], det_labels[i],
                        self.bbox_head.num_classes)
            for i in range(len(det_bboxes))
        ]

        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(
                x, img_metas, det_bboxes, det_labels, rescale=rescale)
            return list(zip(bbox_results, segm_results))

    def aug_test(self, x, proposal_list, img_metas, rescale=False):
        """Test with augmentations.

        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        det_bboxes, det_labels = self.aug_test_bboxes(x, img_metas,
                                                      proposal_list,
                                                      self.test_cfg)
        if rescale:
            _det_bboxes = det_bboxes
        else:
            _det_bboxes = det_bboxes.clone()
            _det_bboxes[:, :4] *= det_bboxes.new_tensor(
                img_metas[0][0]['scale_factor'])
        bbox_results = bbox2result(_det_bboxes, det_labels,
                                   self.bbox_head.num_classes)

        # det_bboxes always keep the original scale
        if self.with_mask:
            segm_results = self.aug_test_mask(x, img_metas, det_bboxes,
                                              det_labels)
            return [(bbox_results, segm_results)]
        else:
            return [bbox_results]

    def onnx_export(self, x, proposals, img_metas, rescale=False):
        """Test without augmentation."""
        assert self.with_bbox, 'Bbox head must be implemented.'
        det_bboxes, det_labels = self.bbox_onnx_export(
            x, img_metas, proposals, self.test_cfg, rescale=rescale)

        if not self.with_mask:
            return det_bboxes, det_labels
        else:
            segm_results = self.mask_onnx_export(
                x, img_metas, det_bboxes, det_labels, rescale=rescale)
            return det_bboxes, det_labels, segm_results

    def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs):
        """Export mask branch to onnx which supports batch inference.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            img_metas (list[dict]): Image meta info.
            det_bboxes (Tensor): Bboxes and corresponding scores.
                has shape [N, num_bboxes, 5].
            det_labels (Tensor): class labels of
                shape [N, num_bboxes].

        Returns:
            Tensor: The segmentation results of shape [N, num_bboxes,
                image_height, image_width].
        """
        # image shapes of images in the batch

        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            raise RuntimeError('[ONNX Error] Can not record MaskHead '
                               'as it has not been executed this time')
        batch_size = det_bboxes.size(0)
        # if det_bboxes is rescaled to the original image size, we need to
        # rescale it back to the testing scale to obtain RoIs.
        det_bboxes = det_bboxes[..., :4]
        batch_index = torch.arange(
            det_bboxes.size(0), device=det_bboxes.device).float().view(
                -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1)
        mask_rois = torch.cat([batch_index, det_bboxes], dim=-1)
        mask_rois = mask_rois.view(-1, 5)
        mask_results = self._mask_forward(x, mask_rois)
        mask_pred = mask_results['mask_pred']
        max_shape = img_metas[0]['img_shape_for_onnx']
        num_det = det_bboxes.shape[1]
        det_bboxes = det_bboxes.reshape(-1, 4)
        det_labels = det_labels.reshape(-1)
        segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes,
                                                  det_labels, self.test_cfg,
                                                  max_shape)
        segm_results = segm_results.reshape(batch_size, num_det, max_shape[0],
                                            max_shape[1])
        return segm_results

    def bbox_onnx_export(self, x, img_metas, proposals, rcnn_test_cfg,
                         **kwargs):
        """Export bbox branch to onnx which supports batch inference.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            img_metas (list[dict]): Image meta info.
            proposals (Tensor): Region proposals with
                batch dimension, has shape [N, num_bboxes, 5].
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.

        Returns:
            tuple[Tensor, Tensor]: bboxes of shape [N, num_bboxes, 5]
                and class labels of shape [N, num_bboxes].
        """
        # get origin input shape to support onnx dynamic input shape
        assert len(
            img_metas
        ) == 1, 'Only support one input image while in exporting to ONNX'
        img_shapes = img_metas[0]['img_shape_for_onnx']

        rois = proposals

        batch_index = torch.arange(
            rois.size(0), device=rois.device).float().view(-1, 1, 1).expand(
                rois.size(0), rois.size(1), 1)

        rois = torch.cat([batch_index, rois[..., :4]], dim=-1)
        batch_size = rois.shape[0]
        num_proposals_per_img = rois.shape[1]

        # Eliminate the batch dimension
        rois = rois.view(-1, 5)
        bbox_results = self._bbox_forward(x, rois)
        cls_score = bbox_results['cls_score']
        bbox_pred = bbox_results['bbox_pred']

        # Recover the batch dimension
        rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1))
        cls_score = cls_score.reshape(batch_size, num_proposals_per_img,
                                      cls_score.size(-1))

        bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img,
                                      bbox_pred.size(-1))
        det_bboxes, det_labels = self.bbox_head.onnx_export(
            rois, cls_score, bbox_pred, img_shapes, cfg=rcnn_test_cfg)

        return det_bboxes, det_labels