File size: 46,542 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_activation_layer, build_conv_layer,
                      build_norm_layer, xavier_init)
from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER,
                                      TRANSFORMER_LAYER_SEQUENCE)
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer,
                                         TransformerLayerSequence,
                                         build_transformer_layer_sequence)
from mmcv.runner.base_module import BaseModule
from mmcv.utils import to_2tuple
from torch.nn.init import normal_

from mmdet.models.utils.builder import TRANSFORMER

try:
    from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention

except ImportError:
    warnings.warn(
        '`MultiScaleDeformableAttention` in MMCV has been moved to '
        '`mmcv.ops.multi_scale_deform_attn`, please update your MMCV')
    from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention


def nlc_to_nchw(x, hw_shape):
    """Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.

    Args:
        x (Tensor): The input tensor of shape [N, L, C] before conversion.
        hw_shape (Sequence[int]): The height and width of output feature map.

    Returns:
        Tensor: The output tensor of shape [N, C, H, W] after conversion.
    """
    H, W = hw_shape
    assert len(x.shape) == 3
    B, L, C = x.shape
    assert L == H * W, 'The seq_len does not match H, W'
    return x.transpose(1, 2).reshape(B, C, H, W).contiguous()


def nchw_to_nlc(x):
    """Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.

    Args:
        x (Tensor): The input tensor of shape [N, C, H, W] before conversion.

    Returns:
        Tensor: The output tensor of shape [N, L, C] after conversion.
    """
    assert len(x.shape) == 4
    return x.flatten(2).transpose(1, 2).contiguous()


class AdaptivePadding(nn.Module):
    """Applies padding to input (if needed) so that input can get fully covered
    by filter you specified. It support two modes "same" and "corner". The
    "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
    input. The "corner"  mode would pad zero to bottom right.

    Args:
        kernel_size (int | tuple): Size of the kernel:
        stride (int | tuple): Stride of the filter. Default: 1:
        dilation (int | tuple): Spacing between kernel elements.
            Default: 1
        padding (str): Support "same" and "corner", "corner" mode
            would pad zero to bottom right, and "same" mode would
            pad zero around input. Default: "corner".
    Example:
        >>> kernel_size = 16
        >>> stride = 16
        >>> dilation = 1
        >>> input = torch.rand(1, 1, 15, 17)
        >>> adap_pad = AdaptivePadding(
        >>>     kernel_size=kernel_size,
        >>>     stride=stride,
        >>>     dilation=dilation,
        >>>     padding="corner")
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
        >>> input = torch.rand(1, 1, 16, 17)
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
    """

    def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):

        super(AdaptivePadding, self).__init__()

        assert padding in ('same', 'corner')

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        dilation = to_2tuple(dilation)

        self.padding = padding
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation

    def get_pad_shape(self, input_shape):
        input_h, input_w = input_shape
        kernel_h, kernel_w = self.kernel_size
        stride_h, stride_w = self.stride
        output_h = math.ceil(input_h / stride_h)
        output_w = math.ceil(input_w / stride_w)
        pad_h = max((output_h - 1) * stride_h +
                    (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
        pad_w = max((output_w - 1) * stride_w +
                    (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
        return pad_h, pad_w

    def forward(self, x):
        pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
        if pad_h > 0 or pad_w > 0:
            if self.padding == 'corner':
                x = F.pad(x, [0, pad_w, 0, pad_h])
            elif self.padding == 'same':
                x = F.pad(x, [
                    pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
                    pad_h - pad_h // 2
                ])
        return x


class PatchEmbed(BaseModule):
    """Image to Patch Embedding.

    We use a conv layer to implement PatchEmbed.

    Args:
        in_channels (int): The num of input channels. Default: 3
        embed_dims (int): The dimensions of embedding. Default: 768
        conv_type (str): The config dict for embedding
            conv layer type selection. Default: "Conv2d.
        kernel_size (int): The kernel_size of embedding conv. Default: 16.
        stride (int): The slide stride of embedding conv.
            Default: None (Would be set as `kernel_size`).
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int): The dilation rate of embedding conv. Default: 1.
        bias (bool): Bias of embed conv. Default: True.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: None.
        input_size (int | tuple | None): The size of input, which will be
            used to calculate the out size. Only work when `dynamic_size`
            is False. Default: None.
        init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
            Default: None.
    """

    def __init__(
        self,
        in_channels=3,
        embed_dims=768,
        conv_type='Conv2d',
        kernel_size=16,
        stride=16,
        padding='corner',
        dilation=1,
        bias=True,
        norm_cfg=None,
        input_size=None,
        init_cfg=None,
    ):
        super(PatchEmbed, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        if stride is None:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adap_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of conv
            padding = 0
        else:
            self.adap_padding = None
        padding = to_2tuple(padding)

        self.projection = build_conv_layer(
            dict(type=conv_type),
            in_channels=in_channels,
            out_channels=embed_dims,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        else:
            self.norm = None

        if input_size:
            input_size = to_2tuple(input_size)
            # `init_out_size` would be used outside to
            # calculate the num_patches
            # when `use_abs_pos_embed` outside
            self.init_input_size = input_size
            if self.adap_padding:
                pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
                input_h, input_w = input_size
                input_h = input_h + pad_h
                input_w = input_w + pad_w
                input_size = (input_h, input_w)

            # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
            h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
                     (kernel_size[0] - 1) - 1) // stride[0] + 1
            w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
                     (kernel_size[1] - 1) - 1) // stride[1] + 1
            self.init_out_size = (h_out, w_out)
        else:
            self.init_input_size = None
            self.init_out_size = None

    def forward(self, x):
        """
        Args:
            x (Tensor): Has shape (B, C, H, W). In most case, C is 3.

        Returns:
            tuple: Contains merged results and its spatial shape.

                - x (Tensor): Has shape (B, out_h * out_w, embed_dims)
                - out_size (tuple[int]): Spatial shape of x, arrange as
                    (out_h, out_w).
        """

        if self.adap_padding:
            x = self.adap_padding(x)

        x = self.projection(x)
        out_size = (x.shape[2], x.shape[3])
        x = x.flatten(2).transpose(1, 2)
        if self.norm is not None:
            x = self.norm(x)
        return x, out_size


class PatchMerging(BaseModule):
    """Merge patch feature map.

    This layer groups feature map by kernel_size, and applies norm and linear
    layers to the grouped feature map. Our implementation uses `nn.Unfold` to
    merge patch, which is about 25% faster than original implementation.
    Instead, we need to modify pretrained models for compatibility.

    Args:
        in_channels (int): The num of input channels.
            to gets fully covered by filter and stride you specified..
            Default: True.
        out_channels (int): The num of output channels.
        kernel_size (int | tuple, optional): the kernel size in the unfold
            layer. Defaults to 2.
        stride (int | tuple, optional): the stride of the sliding blocks in the
            unfold layer. Default: None. (Would be set as `kernel_size`)
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int | tuple, optional): dilation parameter in the unfold
            layer. Default: 1.
        bias (bool, optional): Whether to add bias in linear layer or not.
            Defaults: False.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='LN').
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=2,
                 stride=None,
                 padding='corner',
                 dilation=1,
                 bias=False,
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        if stride:
            stride = stride
        else:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adap_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of unfold
            padding = 0
        else:
            self.adap_padding = None

        padding = to_2tuple(padding)
        self.sampler = nn.Unfold(
            kernel_size=kernel_size,
            dilation=dilation,
            padding=padding,
            stride=stride)

        sample_dim = kernel_size[0] * kernel_size[1] * in_channels

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
        else:
            self.norm = None

        self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)

    def forward(self, x, input_size):
        """
        Args:
            x (Tensor): Has shape (B, H*W, C_in).
            input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
                Default: None.

        Returns:
            tuple: Contains merged results and its spatial shape.

                - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
                - out_size (tuple[int]): Spatial shape of x, arrange as
                    (Merged_H, Merged_W).
        """
        B, L, C = x.shape
        assert isinstance(input_size, Sequence), f'Expect ' \
                                                 f'input_size is ' \
                                                 f'`Sequence` ' \
                                                 f'but get {input_size}'

        H, W = input_size
        assert L == H * W, 'input feature has wrong size'

        x = x.view(B, H, W, C).permute([0, 3, 1, 2])  # B, C, H, W
        # Use nn.Unfold to merge patch. About 25% faster than original method,
        # but need to modify pretrained model for compatibility

        if self.adap_padding:
            x = self.adap_padding(x)
            H, W = x.shape[-2:]

        x = self.sampler(x)
        # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)

        out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
                 (self.sampler.kernel_size[0] - 1) -
                 1) // self.sampler.stride[0] + 1
        out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
                 (self.sampler.kernel_size[1] - 1) -
                 1) // self.sampler.stride[1] + 1

        output_size = (out_h, out_w)
        x = x.transpose(1, 2)  # B, H/2*W/2, 4*C
        x = self.norm(x) if self.norm else x
        x = self.reduction(x)
        return x, output_size


def inverse_sigmoid(x, eps=1e-5):
    """Inverse function of sigmoid.

    Args:
        x (Tensor): The tensor to do the
            inverse.
        eps (float): EPS avoid numerical
            overflow. Defaults 1e-5.
    Returns:
        Tensor: The x has passed the inverse
            function of sigmoid, has same
            shape with input.
    """
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


@TRANSFORMER_LAYER.register_module()
class DetrTransformerDecoderLayer(BaseTransformerLayer):
    """Implements decoder layer in DETR transformer.

    Args:
        attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )):
            Configs for self_attention or cross_attention, the order
            should be consistent with it in `operation_order`. If it is
            a dict, it would be expand to the number of attention in
            `operation_order`.
        feedforward_channels (int): The hidden dimension for FFNs.
        ffn_dropout (float): Probability of an element to be zeroed
            in ffn. Default 0.0.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
            Default:None
        act_cfg (dict): The activation config for FFNs. Default: `LN`
        norm_cfg (dict): Config dict for normalization layer.
            Default: `LN`.
        ffn_num_fcs (int): The number of fully-connected layers in FFNs.
            Default:2.
    """

    def __init__(self,
                 attn_cfgs,
                 feedforward_channels,
                 ffn_dropout=0.0,
                 operation_order=None,
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_cfg=dict(type='LN'),
                 ffn_num_fcs=2,
                 **kwargs):
        super(DetrTransformerDecoderLayer, self).__init__(
            attn_cfgs=attn_cfgs,
            feedforward_channels=feedforward_channels,
            ffn_dropout=ffn_dropout,
            operation_order=operation_order,
            act_cfg=act_cfg,
            norm_cfg=norm_cfg,
            ffn_num_fcs=ffn_num_fcs,
            **kwargs)
        assert len(operation_order) == 6
        assert set(operation_order) == set(
            ['self_attn', 'norm', 'cross_attn', 'ffn'])


@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerEncoder(TransformerLayerSequence):
    """TransformerEncoder of DETR.

    Args:
        post_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`. Only used when `self.pre_norm` is `True`
    """

    def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs):
        super(DetrTransformerEncoder, self).__init__(*args, **kwargs)
        if post_norm_cfg is not None:
            self.post_norm = build_norm_layer(
                post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None
        else:
            assert not self.pre_norm, f'Use prenorm in ' \
                                      f'{self.__class__.__name__},' \
                                      f'Please specify post_norm_cfg'
            self.post_norm = None

    def forward(self, *args, **kwargs):
        """Forward function for `TransformerCoder`.

        Returns:
            Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """
        x = super(DetrTransformerEncoder, self).forward(*args, **kwargs)
        if self.post_norm is not None:
            x = self.post_norm(x)
        return x


@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        post_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self,
                 *args,
                 post_norm_cfg=dict(type='LN'),
                 return_intermediate=False,
                 **kwargs):

        super(DetrTransformerDecoder, self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate
        if post_norm_cfg is not None:
            self.post_norm = build_norm_layer(post_norm_cfg,
                                              self.embed_dims)[1]
        else:
            self.post_norm = None

    def forward(self, query, *args, **kwargs):
        """Forward function for `TransformerDecoder`.

        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.

        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        if not self.return_intermediate:
            x = super().forward(query, *args, **kwargs)
            if self.post_norm:
                x = self.post_norm(x)[None]
            return x

        intermediate = []
        for layer in self.layers:
            query = layer(query, *args, **kwargs)
            if self.return_intermediate:
                if self.post_norm is not None:
                    intermediate.append(self.post_norm(query))
                else:
                    intermediate.append(query)
        return torch.stack(intermediate)


@TRANSFORMER.register_module()
class Transformer(BaseModule):
    """Implements the DETR transformer.

    Following the official DETR implementation, this module copy-paste
    from torch.nn.Transformer with modifications:

        * positional encodings are passed in MultiheadAttention
        * extra LN at the end of encoder is removed
        * decoder returns a stack of activations from all decoding layers

    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.

    Args:
        encoder (`mmcv.ConfigDict` | Dict): Config of
            TransformerEncoder. Defaults to None.
        decoder ((`mmcv.ConfigDict` | Dict)): Config of
            TransformerDecoder. Defaults to None
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Defaults to None.
    """

    def __init__(self, encoder=None, decoder=None, init_cfg=None):
        super(Transformer, self).__init__(init_cfg=init_cfg)
        self.encoder = build_transformer_layer_sequence(encoder)
        self.decoder = build_transformer_layer_sequence(decoder)
        self.embed_dims = self.encoder.embed_dims

    def init_weights(self):
        # follow the official DETR to init parameters
        for m in self.modules():
            if hasattr(m, 'weight') and m.weight.dim() > 1:
                xavier_init(m, distribution='uniform')
        self._is_init = True

    def forward(self, x, mask, query_embed, pos_embed):
        """Forward function for `Transformer`.

        Args:
            x (Tensor): Input query with shape [bs, c, h, w] where
                c = embed_dims.
            mask (Tensor): The key_padding_mask used for encoder and decoder,
                with shape [bs, h, w].
            query_embed (Tensor): The query embedding for decoder, with shape
                [num_query, c].
            pos_embed (Tensor): The positional encoding for encoder and
                decoder, with the same shape as `x`.

        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.

                - out_dec: Output from decoder. If return_intermediate_dec \
                      is True output has shape [num_dec_layers, bs,
                      num_query, embed_dims], else has shape [1, bs, \
                      num_query, embed_dims].
                - memory: Output results from encoder, with shape \
                      [bs, embed_dims, h, w].
        """
        bs, c, h, w = x.shape
        # use `view` instead of `flatten` for dynamically exporting to ONNX
        x = x.view(bs, c, -1).permute(2, 0, 1)  # [bs, c, h, w] -> [h*w, bs, c]
        pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1)  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, h, w] -> [bs, h*w]
        memory = self.encoder(
            query=x,
            key=None,
            value=None,
            query_pos=pos_embed,
            query_key_padding_mask=mask)
        target = torch.zeros_like(query_embed)
        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask)
        out_dec = out_dec.transpose(1, 2)
        memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
        return out_dec, memory


@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DeformableDetrTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        coder_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self, *args, return_intermediate=False, **kwargs):

        super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate

    def forward(self,
                query,
                *args,
                reference_points=None,
                valid_ratios=None,
                reg_branches=None,
                **kwargs):
        """Forward function for `TransformerDecoder`.

        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.
            reference_points (Tensor): The reference
                points of offset. has shape
                (bs, num_query, 4) when as_two_stage,
                otherwise has shape ((bs, num_query, 2).
            valid_ratios (Tensor): The radios of valid
                points on the feature map, has shape
                (bs, num_levels, 2)
            reg_branch: (obj:`nn.ModuleList`): Used for
                refining the regression results. Only would
                be passed when with_box_refine is True,
                otherwise would be passed a `None`.

        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        output = query
        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = reference_points[:, :, None] * \
                    torch.cat([valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * \
                    valid_ratios[:, None]
            output = layer(
                output,
                *args,
                reference_points=reference_points_input,
                **kwargs)
            output = output.permute(1, 0, 2)

            if reg_branches is not None:
                tmp = reg_branches[lid](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp + inverse_sigmoid(
                        reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[
                        ..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            output = output.permute(1, 0, 2)
            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


@TRANSFORMER.register_module()
class DeformableDetrTransformer(Transformer):
    """Implements the DeformableDETR transformer.

    Args:
        as_two_stage (bool): Generate query from encoder features.
            Default: False.
        num_feature_levels (int): Number of feature maps from FPN:
            Default: 4.
        two_stage_num_proposals (int): Number of proposals when set
            `as_two_stage` as True. Default: 300.
    """

    def __init__(self,
                 as_two_stage=False,
                 num_feature_levels=4,
                 two_stage_num_proposals=300,
                 **kwargs):
        super(DeformableDetrTransformer, self).__init__(**kwargs)
        self.as_two_stage = as_two_stage
        self.num_feature_levels = num_feature_levels
        self.two_stage_num_proposals = two_stage_num_proposals
        self.embed_dims = self.encoder.embed_dims
        self.init_layers()

    def init_layers(self):
        """Initialize layers of the DeformableDetrTransformer."""
        self.level_embeds = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))

        if self.as_two_stage:
            self.enc_output = nn.Linear(self.embed_dims, self.embed_dims)
            self.enc_output_norm = nn.LayerNorm(self.embed_dims)
            self.pos_trans = nn.Linear(self.embed_dims * 2,
                                       self.embed_dims * 2)
            self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
        else:
            self.reference_points = nn.Linear(self.embed_dims, 2)

    def init_weights(self):
        """Initialize the transformer weights."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()
        if not self.as_two_stage:
            xavier_init(self.reference_points, distribution='uniform', bias=0.)
        normal_(self.level_embeds)

    def gen_encoder_output_proposals(self, memory, memory_padding_mask,
                                     spatial_shapes):
        """Generate proposals from encoded memory.

        Args:
            memory (Tensor) : The output of encoder,
                has shape (bs, num_key, embed_dim).  num_key is
                equal the number of points on feature map from
                all level.
            memory_padding_mask (Tensor): Padding mask for memory.
                has shape (bs, num_key).
            spatial_shapes (Tensor): The shape of all feature maps.
                has shape (num_level, 2).

        Returns:
            tuple: A tuple of feature map and bbox prediction.

                - output_memory (Tensor): The input of decoder,  \
                    has shape (bs, num_key, embed_dim).  num_key is \
                    equal the number of points on feature map from \
                    all levels.
                - output_proposals (Tensor): The normalized proposal \
                    after a inverse sigmoid, has shape \
                    (bs, num_keys, 4).
        """

        N, S, C = memory.shape
        proposals = []
        _cur = 0
        for lvl, (H, W) in enumerate(spatial_shapes):
            mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view(
                N, H, W, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = torch.meshgrid(
                torch.linspace(
                    0, H - 1, H, dtype=torch.float32, device=memory.device),
                torch.linspace(
                    0, W - 1, W, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W.unsqueeze(-1),
                               valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale
            wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
            proposal = torch.cat((grid, wh), -1).view(N, -1, 4)
            proposals.append(proposal)
            _cur += (H * W)
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) &
                                  (output_proposals < 0.99)).all(
                                      -1, keepdim=True)
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(
            memory_padding_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(
            ~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(
            memory_padding_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid,
                                                  float(0))
        output_memory = self.enc_output_norm(self.enc_output(output_memory))
        return output_memory, output_proposals

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        """Get the reference points used in decoder.

        Args:
            spatial_shapes (Tensor): The shape of all
                feature maps, has shape (num_level, 2).
            valid_ratios (Tensor): The radios of valid
                points on the feature map, has shape
                (bs, num_levels, 2)
            device (obj:`device`): The device where
                reference_points should be.

        Returns:
            Tensor: reference points used in decoder, has \
                shape (bs, num_keys, num_levels, 2).
        """
        reference_points_list = []
        for lvl, (H, W) in enumerate(spatial_shapes):
            #  TODO  check this 0.5
            ref_y, ref_x = torch.meshgrid(
                torch.linspace(
                    0.5, H - 0.5, H, dtype=torch.float32, device=device),
                torch.linspace(
                    0.5, W - 0.5, W, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 1] * H)
            ref_x = ref_x.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 0] * W)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def get_valid_ratio(self, mask):
        """Get the valid radios of feature maps of all  level."""
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def get_proposal_pos_embed(self,
                               proposals,
                               num_pos_feats=128,
                               temperature=10000):
        """Get the position embedding of proposal."""
        scale = 2 * math.pi
        dim_t = torch.arange(
            num_pos_feats, dtype=torch.float32, device=proposals.device)
        dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 4, 64, 2
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
                          dim=4).flatten(2)
        return pos

    def forward(self,
                mlvl_feats,
                mlvl_masks,
                query_embed,
                mlvl_pos_embeds,
                reg_branches=None,
                cls_branches=None,
                **kwargs):
        """Forward function for `Transformer`.

        Args:
            mlvl_feats (list(Tensor)): Input queries from
                different level. Each element has shape
                [bs, embed_dims, h, w].
            mlvl_masks (list(Tensor)): The key_padding_mask from
                different level used for encoder and decoder,
                each element has shape  [bs, h, w].
            query_embed (Tensor): The query embedding for decoder,
                with shape [num_query, c].
            mlvl_pos_embeds (list(Tensor)): The positional encoding
                of feats from different level, has the shape
                 [bs, embed_dims, h, w].
            reg_branches (obj:`nn.ModuleList`): Regression heads for
                feature maps from each decoder layer. Only would
                be passed when
                `with_box_refine` is True. Default to None.
            cls_branches (obj:`nn.ModuleList`): Classification heads
                for feature maps from each decoder layer. Only would
                 be passed when `as_two_stage`
                 is True. Default to None.


        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.

                - inter_states: Outputs from decoder. If
                    return_intermediate_dec is True output has shape \
                      (num_dec_layers, bs, num_query, embed_dims), else has \
                      shape (1, bs, num_query, embed_dims).
                - init_reference_out: The initial value of reference \
                    points, has shape (bs, num_queries, 4).
                - inter_references_out: The internal value of reference \
                    points in decoder, has shape \
                    (num_dec_layers, bs,num_query, embed_dims)
                - enc_outputs_class: The classification score of \
                    proposals generated from \
                    encoder's feature maps, has shape \
                    (batch, h*w, num_classes). \
                    Only would be returned when `as_two_stage` is True, \
                    otherwise None.
                - enc_outputs_coord_unact: The regression results \
                    generated from encoder's feature maps., has shape \
                    (batch, h*w, 4). Only would \
                    be returned when `as_two_stage` is True, \
                    otherwise None.
        """
        assert self.as_two_stage or query_embed is not None

        feat_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        reference_points = \
            self.get_reference_points(spatial_shapes,
                                      valid_ratios,
                                      device=feat.device)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)
        lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
            1, 0, 2)  # (H*W, bs, embed_dims)
        memory = self.encoder(
            query=feat_flatten,
            key=None,
            value=None,
            query_pos=lvl_pos_embed_flatten,
            query_key_padding_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            reference_points=reference_points,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            **kwargs)

        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape
        if self.as_two_stage:
            output_memory, output_proposals = \
                self.gen_encoder_output_proposals(
                    memory, mask_flatten, spatial_shapes)
            enc_outputs_class = cls_branches[self.decoder.num_layers](
                output_memory)
            enc_outputs_coord_unact = \
                reg_branches[
                    self.decoder.num_layers](output_memory) + output_proposals

            topk = self.two_stage_num_proposals
            # We only use the first channel in enc_outputs_class as foreground,
            # the other (num_classes - 1) channels are actually not used.
            # Its targets are set to be 0s, which indicates the first
            # class (foreground) because we use [0, num_classes - 1] to
            # indicate class labels, background class is indicated by
            # num_classes (similar convention in RPN).
            # See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
            # This follows the official implementation of Deformable DETR.
            topk_proposals = torch.topk(
                enc_outputs_class[..., 0], topk, dim=1)[1]
            topk_coords_unact = torch.gather(
                enc_outputs_coord_unact, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(
                self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_pos, query = torch.split(pos_trans_out, c, dim=2)
        else:
            query_pos, query = torch.split(query_embed, c, dim=1)
            query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
            query = query.unsqueeze(0).expand(bs, -1, -1)
            reference_points = self.reference_points(query_pos).sigmoid()
            init_reference_out = reference_points

        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            query_pos=query_pos,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            **kwargs)

        inter_references_out = inter_references
        if self.as_two_stage:
            return inter_states, init_reference_out,\
                inter_references_out, enc_outputs_class,\
                enc_outputs_coord_unact
        return inter_states, init_reference_out, \
            inter_references_out, None, None


@TRANSFORMER.register_module()
class DynamicConv(BaseModule):
    """Implements Dynamic Convolution.

    This module generate parameters for each sample and
    use bmm to implement 1*1 convolution. Code is modified
    from the `official github repo <https://github.com/PeizeSun/
    SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ .

    Args:
        in_channels (int): The input feature channel.
            Defaults to 256.
        feat_channels (int): The inner feature channel.
            Defaults to 64.
        out_channels (int, optional): The output feature channel.
            When not specified, it will be set to `in_channels`
            by default
        input_feat_shape (int): The shape of input feature.
            Defaults to 7.
        with_proj (bool): Project two-dimentional feature to
            one-dimentional feature. Default to True.
        act_cfg (dict): The activation config for DynamicConv.
        norm_cfg (dict): Config dict for normalization layer. Default
            layer normalization.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels=256,
                 feat_channels=64,
                 out_channels=None,
                 input_feat_shape=7,
                 with_proj=True,
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):
        super(DynamicConv, self).__init__(init_cfg)
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.out_channels_raw = out_channels
        self.input_feat_shape = input_feat_shape
        self.with_proj = with_proj
        self.act_cfg = act_cfg
        self.norm_cfg = norm_cfg
        self.out_channels = out_channels if out_channels else in_channels

        self.num_params_in = self.in_channels * self.feat_channels
        self.num_params_out = self.out_channels * self.feat_channels
        self.dynamic_layer = nn.Linear(
            self.in_channels, self.num_params_in + self.num_params_out)

        self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
        self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1]

        self.activation = build_activation_layer(act_cfg)

        num_output = self.out_channels * input_feat_shape**2
        if self.with_proj:
            self.fc_layer = nn.Linear(num_output, self.out_channels)
            self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]

    def forward(self, param_feature, input_feature):
        """Forward function for `DynamicConv`.

        Args:
            param_feature (Tensor): The feature can be used
                to generate the parameter, has shape
                (num_all_proposals, in_channels).
            input_feature (Tensor): Feature that
                interact with parameters, has shape
                (num_all_proposals, in_channels, H, W).

        Returns:
            Tensor: The output feature has shape
            (num_all_proposals, out_channels).
        """
        input_feature = input_feature.flatten(2).permute(2, 0, 1)

        input_feature = input_feature.permute(1, 0, 2)
        parameters = self.dynamic_layer(param_feature)

        param_in = parameters[:, :self.num_params_in].view(
            -1, self.in_channels, self.feat_channels)
        param_out = parameters[:, -self.num_params_out:].view(
            -1, self.feat_channels, self.out_channels)

        # input_feature has shape (num_all_proposals, H*W, in_channels)
        # param_in has shape (num_all_proposals, in_channels, feat_channels)
        # feature has shape (num_all_proposals, H*W, feat_channels)
        features = torch.bmm(input_feature, param_in)
        features = self.norm_in(features)
        features = self.activation(features)

        # param_out has shape (batch_size, feat_channels, out_channels)
        features = torch.bmm(features, param_out)
        features = self.norm_out(features)
        features = self.activation(features)

        if self.with_proj:
            features = features.flatten(1)
            features = self.fc_layer(features)
            features = self.fc_norm(features)
            features = self.activation(features)

        return features