Spaces:
Runtime error
Runtime error
File size: 46,542 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_activation_layer, build_conv_layer,
build_norm_layer, xavier_init)
from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER,
TRANSFORMER_LAYER_SEQUENCE)
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer,
TransformerLayerSequence,
build_transformer_layer_sequence)
from mmcv.runner.base_module import BaseModule
from mmcv.utils import to_2tuple
from torch.nn.init import normal_
from mmdet.models.utils.builder import TRANSFORMER
try:
from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention
except ImportError:
warnings.warn(
'`MultiScaleDeformableAttention` in MMCV has been moved to '
'`mmcv.ops.multi_scale_deform_attn`, please update your MMCV')
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
def nlc_to_nchw(x, hw_shape):
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, L, C] before conversion.
hw_shape (Sequence[int]): The height and width of output feature map.
Returns:
Tensor: The output tensor of shape [N, C, H, W] after conversion.
"""
H, W = hw_shape
assert len(x.shape) == 3
B, L, C = x.shape
assert L == H * W, 'The seq_len does not match H, W'
return x.transpose(1, 2).reshape(B, C, H, W).contiguous()
def nchw_to_nlc(x):
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, C, H, W] before conversion.
Returns:
Tensor: The output tensor of shape [N, L, C] after conversion.
"""
assert len(x.shape) == 4
return x.flatten(2).transpose(1, 2).contiguous()
class AdaptivePadding(nn.Module):
"""Applies padding to input (if needed) so that input can get fully covered
by filter you specified. It support two modes "same" and "corner". The
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
input. The "corner" mode would pad zero to bottom right.
Args:
kernel_size (int | tuple): Size of the kernel:
stride (int | tuple): Stride of the filter. Default: 1:
dilation (int | tuple): Spacing between kernel elements.
Default: 1
padding (str): Support "same" and "corner", "corner" mode
would pad zero to bottom right, and "same" mode would
pad zero around input. Default: "corner".
Example:
>>> kernel_size = 16
>>> stride = 16
>>> dilation = 1
>>> input = torch.rand(1, 1, 15, 17)
>>> adap_pad = AdaptivePadding(
>>> kernel_size=kernel_size,
>>> stride=stride,
>>> dilation=dilation,
>>> padding="corner")
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
>>> input = torch.rand(1, 1, 16, 17)
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
"""
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):
super(AdaptivePadding, self).__init__()
assert padding in ('same', 'corner')
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
dilation = to_2tuple(dilation)
self.padding = padding
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
def get_pad_shape(self, input_shape):
input_h, input_w = input_shape
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.stride
output_h = math.ceil(input_h / stride_h)
output_w = math.ceil(input_w / stride_w)
pad_h = max((output_h - 1) * stride_h +
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
pad_w = max((output_w - 1) * stride_w +
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
return pad_h, pad_w
def forward(self, x):
pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
if pad_h > 0 or pad_w > 0:
if self.padding == 'corner':
x = F.pad(x, [0, pad_w, 0, pad_h])
elif self.padding == 'same':
x = F.pad(x, [
pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
pad_h - pad_h // 2
])
return x
class PatchEmbed(BaseModule):
"""Image to Patch Embedding.
We use a conv layer to implement PatchEmbed.
Args:
in_channels (int): The num of input channels. Default: 3
embed_dims (int): The dimensions of embedding. Default: 768
conv_type (str): The config dict for embedding
conv layer type selection. Default: "Conv2d.
kernel_size (int): The kernel_size of embedding conv. Default: 16.
stride (int): The slide stride of embedding conv.
Default: None (Would be set as `kernel_size`).
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int): The dilation rate of embedding conv. Default: 1.
bias (bool): Bias of embed conv. Default: True.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: None.
input_size (int | tuple | None): The size of input, which will be
used to calculate the out size. Only work when `dynamic_size`
is False. Default: None.
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
Default: None.
"""
def __init__(
self,
in_channels=3,
embed_dims=768,
conv_type='Conv2d',
kernel_size=16,
stride=16,
padding='corner',
dilation=1,
bias=True,
norm_cfg=None,
input_size=None,
init_cfg=None,
):
super(PatchEmbed, self).__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
if stride is None:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of conv
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.projection = build_conv_layer(
dict(type=conv_type),
in_channels=in_channels,
out_channels=embed_dims,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
else:
self.norm = None
if input_size:
input_size = to_2tuple(input_size)
# `init_out_size` would be used outside to
# calculate the num_patches
# when `use_abs_pos_embed` outside
self.init_input_size = input_size
if self.adap_padding:
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
input_h, input_w = input_size
input_h = input_h + pad_h
input_w = input_w + pad_w
input_size = (input_h, input_w)
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
(kernel_size[0] - 1) - 1) // stride[0] + 1
w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
(kernel_size[1] - 1) - 1) // stride[1] + 1
self.init_out_size = (h_out, w_out)
else:
self.init_input_size = None
self.init_out_size = None
def forward(self, x):
"""
Args:
x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_h, out_w).
"""
if self.adap_padding:
x = self.adap_padding(x)
x = self.projection(x)
out_size = (x.shape[2], x.shape[3])
x = x.flatten(2).transpose(1, 2)
if self.norm is not None:
x = self.norm(x)
return x, out_size
class PatchMerging(BaseModule):
"""Merge patch feature map.
This layer groups feature map by kernel_size, and applies norm and linear
layers to the grouped feature map. Our implementation uses `nn.Unfold` to
merge patch, which is about 25% faster than original implementation.
Instead, we need to modify pretrained models for compatibility.
Args:
in_channels (int): The num of input channels.
to gets fully covered by filter and stride you specified..
Default: True.
out_channels (int): The num of output channels.
kernel_size (int | tuple, optional): the kernel size in the unfold
layer. Defaults to 2.
stride (int | tuple, optional): the stride of the sliding blocks in the
unfold layer. Default: None. (Would be set as `kernel_size`)
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int | tuple, optional): dilation parameter in the unfold
layer. Default: 1.
bias (bool, optional): Whether to add bias in linear layer or not.
Defaults: False.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='LN').
init_cfg (dict, optional): The extra config for initialization.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=2,
stride=None,
padding='corner',
dilation=1,
bias=False,
norm_cfg=dict(type='LN'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
if stride:
stride = stride
else:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of unfold
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.sampler = nn.Unfold(
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride)
sample_dim = kernel_size[0] * kernel_size[1] * in_channels
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
else:
self.norm = None
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
def forward(self, x, input_size):
"""
Args:
x (Tensor): Has shape (B, H*W, C_in).
input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
Default: None.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
- out_size (tuple[int]): Spatial shape of x, arrange as
(Merged_H, Merged_W).
"""
B, L, C = x.shape
assert isinstance(input_size, Sequence), f'Expect ' \
f'input_size is ' \
f'`Sequence` ' \
f'but get {input_size}'
H, W = input_size
assert L == H * W, 'input feature has wrong size'
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W
# Use nn.Unfold to merge patch. About 25% faster than original method,
# but need to modify pretrained model for compatibility
if self.adap_padding:
x = self.adap_padding(x)
H, W = x.shape[-2:]
x = self.sampler(x)
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
(self.sampler.kernel_size[0] - 1) -
1) // self.sampler.stride[0] + 1
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
(self.sampler.kernel_size[1] - 1) -
1) // self.sampler.stride[1] + 1
output_size = (out_h, out_w)
x = x.transpose(1, 2) # B, H/2*W/2, 4*C
x = self.norm(x) if self.norm else x
x = self.reduction(x)
return x, output_size
def inverse_sigmoid(x, eps=1e-5):
"""Inverse function of sigmoid.
Args:
x (Tensor): The tensor to do the
inverse.
eps (float): EPS avoid numerical
overflow. Defaults 1e-5.
Returns:
Tensor: The x has passed the inverse
function of sigmoid, has same
shape with input.
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
@TRANSFORMER_LAYER.register_module()
class DetrTransformerDecoderLayer(BaseTransformerLayer):
"""Implements decoder layer in DETR transformer.
Args:
attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )):
Configs for self_attention or cross_attention, the order
should be consistent with it in `operation_order`. If it is
a dict, it would be expand to the number of attention in
`operation_order`.
feedforward_channels (int): The hidden dimension for FFNs.
ffn_dropout (float): Probability of an element to be zeroed
in ffn. Default 0.0.
operation_order (tuple[str]): The execution order of operation
in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
Default:None
act_cfg (dict): The activation config for FFNs. Default: `LN`
norm_cfg (dict): Config dict for normalization layer.
Default: `LN`.
ffn_num_fcs (int): The number of fully-connected layers in FFNs.
Default:2.
"""
def __init__(self,
attn_cfgs,
feedforward_channels,
ffn_dropout=0.0,
operation_order=None,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
ffn_num_fcs=2,
**kwargs):
super(DetrTransformerDecoderLayer, self).__init__(
attn_cfgs=attn_cfgs,
feedforward_channels=feedforward_channels,
ffn_dropout=ffn_dropout,
operation_order=operation_order,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
ffn_num_fcs=ffn_num_fcs,
**kwargs)
assert len(operation_order) == 6
assert set(operation_order) == set(
['self_attn', 'norm', 'cross_attn', 'ffn'])
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerEncoder(TransformerLayerSequence):
"""TransformerEncoder of DETR.
Args:
post_norm_cfg (dict): Config of last normalization layer. Default:
`LN`. Only used when `self.pre_norm` is `True`
"""
def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs):
super(DetrTransformerEncoder, self).__init__(*args, **kwargs)
if post_norm_cfg is not None:
self.post_norm = build_norm_layer(
post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None
else:
assert not self.pre_norm, f'Use prenorm in ' \
f'{self.__class__.__name__},' \
f'Please specify post_norm_cfg'
self.post_norm = None
def forward(self, *args, **kwargs):
"""Forward function for `TransformerCoder`.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
x = super(DetrTransformerEncoder, self).forward(*args, **kwargs)
if self.post_norm is not None:
x = self.post_norm(x)
return x
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DetrTransformerDecoder(TransformerLayerSequence):
"""Implements the decoder in DETR transformer.
Args:
return_intermediate (bool): Whether to return intermediate outputs.
post_norm_cfg (dict): Config of last normalization layer. Default:
`LN`.
"""
def __init__(self,
*args,
post_norm_cfg=dict(type='LN'),
return_intermediate=False,
**kwargs):
super(DetrTransformerDecoder, self).__init__(*args, **kwargs)
self.return_intermediate = return_intermediate
if post_norm_cfg is not None:
self.post_norm = build_norm_layer(post_norm_cfg,
self.embed_dims)[1]
else:
self.post_norm = None
def forward(self, query, *args, **kwargs):
"""Forward function for `TransformerDecoder`.
Args:
query (Tensor): Input query with shape
`(num_query, bs, embed_dims)`.
Returns:
Tensor: Results with shape [1, num_query, bs, embed_dims] when
return_intermediate is `False`, otherwise it has shape
[num_layers, num_query, bs, embed_dims].
"""
if not self.return_intermediate:
x = super().forward(query, *args, **kwargs)
if self.post_norm:
x = self.post_norm(x)[None]
return x
intermediate = []
for layer in self.layers:
query = layer(query, *args, **kwargs)
if self.return_intermediate:
if self.post_norm is not None:
intermediate.append(self.post_norm(query))
else:
intermediate.append(query)
return torch.stack(intermediate)
@TRANSFORMER.register_module()
class Transformer(BaseModule):
"""Implements the DETR transformer.
Following the official DETR implementation, this module copy-paste
from torch.nn.Transformer with modifications:
* positional encodings are passed in MultiheadAttention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
See `paper: End-to-End Object Detection with Transformers
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
encoder (`mmcv.ConfigDict` | Dict): Config of
TransformerEncoder. Defaults to None.
decoder ((`mmcv.ConfigDict` | Dict)): Config of
TransformerDecoder. Defaults to None
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Defaults to None.
"""
def __init__(self, encoder=None, decoder=None, init_cfg=None):
super(Transformer, self).__init__(init_cfg=init_cfg)
self.encoder = build_transformer_layer_sequence(encoder)
self.decoder = build_transformer_layer_sequence(decoder)
self.embed_dims = self.encoder.embed_dims
def init_weights(self):
# follow the official DETR to init parameters
for m in self.modules():
if hasattr(m, 'weight') and m.weight.dim() > 1:
xavier_init(m, distribution='uniform')
self._is_init = True
def forward(self, x, mask, query_embed, pos_embed):
"""Forward function for `Transformer`.
Args:
x (Tensor): Input query with shape [bs, c, h, w] where
c = embed_dims.
mask (Tensor): The key_padding_mask used for encoder and decoder,
with shape [bs, h, w].
query_embed (Tensor): The query embedding for decoder, with shape
[num_query, c].
pos_embed (Tensor): The positional encoding for encoder and
decoder, with the same shape as `x`.
Returns:
tuple[Tensor]: results of decoder containing the following tensor.
- out_dec: Output from decoder. If return_intermediate_dec \
is True output has shape [num_dec_layers, bs,
num_query, embed_dims], else has shape [1, bs, \
num_query, embed_dims].
- memory: Output results from encoder, with shape \
[bs, embed_dims, h, w].
"""
bs, c, h, w = x.shape
# use `view` instead of `flatten` for dynamically exporting to ONNX
x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c]
pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(
1, bs, 1) # [num_query, dim] -> [num_query, bs, dim]
mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w]
memory = self.encoder(
query=x,
key=None,
value=None,
query_pos=pos_embed,
query_key_padding_mask=mask)
target = torch.zeros_like(query_embed)
# out_dec: [num_layers, num_query, bs, dim]
out_dec = self.decoder(
query=target,
key=memory,
value=memory,
key_pos=pos_embed,
query_pos=query_embed,
key_padding_mask=mask)
out_dec = out_dec.transpose(1, 2)
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
return out_dec, memory
@TRANSFORMER_LAYER_SEQUENCE.register_module()
class DeformableDetrTransformerDecoder(TransformerLayerSequence):
"""Implements the decoder in DETR transformer.
Args:
return_intermediate (bool): Whether to return intermediate outputs.
coder_norm_cfg (dict): Config of last normalization layer. Default:
`LN`.
"""
def __init__(self, *args, return_intermediate=False, **kwargs):
super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs)
self.return_intermediate = return_intermediate
def forward(self,
query,
*args,
reference_points=None,
valid_ratios=None,
reg_branches=None,
**kwargs):
"""Forward function for `TransformerDecoder`.
Args:
query (Tensor): Input query with shape
`(num_query, bs, embed_dims)`.
reference_points (Tensor): The reference
points of offset. has shape
(bs, num_query, 4) when as_two_stage,
otherwise has shape ((bs, num_query, 2).
valid_ratios (Tensor): The radios of valid
points on the feature map, has shape
(bs, num_levels, 2)
reg_branch: (obj:`nn.ModuleList`): Used for
refining the regression results. Only would
be passed when with_box_refine is True,
otherwise would be passed a `None`.
Returns:
Tensor: Results with shape [1, num_query, bs, embed_dims] when
return_intermediate is `False`, otherwise it has shape
[num_layers, num_query, bs, embed_dims].
"""
output = query
intermediate = []
intermediate_reference_points = []
for lid, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = reference_points[:, :, None] * \
torch.cat([valid_ratios, valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = reference_points[:, :, None] * \
valid_ratios[:, None]
output = layer(
output,
*args,
reference_points=reference_points_input,
**kwargs)
output = output.permute(1, 0, 2)
if reg_branches is not None:
tmp = reg_branches[lid](output)
if reference_points.shape[-1] == 4:
new_reference_points = tmp + inverse_sigmoid(
reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
assert reference_points.shape[-1] == 2
new_reference_points = tmp
new_reference_points[..., :2] = tmp[
..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
output = output.permute(1, 0, 2)
if self.return_intermediate:
intermediate.append(output)
intermediate_reference_points.append(reference_points)
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(
intermediate_reference_points)
return output, reference_points
@TRANSFORMER.register_module()
class DeformableDetrTransformer(Transformer):
"""Implements the DeformableDETR transformer.
Args:
as_two_stage (bool): Generate query from encoder features.
Default: False.
num_feature_levels (int): Number of feature maps from FPN:
Default: 4.
two_stage_num_proposals (int): Number of proposals when set
`as_two_stage` as True. Default: 300.
"""
def __init__(self,
as_two_stage=False,
num_feature_levels=4,
two_stage_num_proposals=300,
**kwargs):
super(DeformableDetrTransformer, self).__init__(**kwargs)
self.as_two_stage = as_two_stage
self.num_feature_levels = num_feature_levels
self.two_stage_num_proposals = two_stage_num_proposals
self.embed_dims = self.encoder.embed_dims
self.init_layers()
def init_layers(self):
"""Initialize layers of the DeformableDetrTransformer."""
self.level_embeds = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
if self.as_two_stage:
self.enc_output = nn.Linear(self.embed_dims, self.embed_dims)
self.enc_output_norm = nn.LayerNorm(self.embed_dims)
self.pos_trans = nn.Linear(self.embed_dims * 2,
self.embed_dims * 2)
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
else:
self.reference_points = nn.Linear(self.embed_dims, 2)
def init_weights(self):
"""Initialize the transformer weights."""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
if not self.as_two_stage:
xavier_init(self.reference_points, distribution='uniform', bias=0.)
normal_(self.level_embeds)
def gen_encoder_output_proposals(self, memory, memory_padding_mask,
spatial_shapes):
"""Generate proposals from encoded memory.
Args:
memory (Tensor) : The output of encoder,
has shape (bs, num_key, embed_dim). num_key is
equal the number of points on feature map from
all level.
memory_padding_mask (Tensor): Padding mask for memory.
has shape (bs, num_key).
spatial_shapes (Tensor): The shape of all feature maps.
has shape (num_level, 2).
Returns:
tuple: A tuple of feature map and bbox prediction.
- output_memory (Tensor): The input of decoder, \
has shape (bs, num_key, embed_dim). num_key is \
equal the number of points on feature map from \
all levels.
- output_proposals (Tensor): The normalized proposal \
after a inverse sigmoid, has shape \
(bs, num_keys, 4).
"""
N, S, C = memory.shape
proposals = []
_cur = 0
for lvl, (H, W) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view(
N, H, W, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(
0, H - 1, H, dtype=torch.float32, device=memory.device),
torch.linspace(
0, W - 1, W, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W.unsqueeze(-1),
valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(N, -1, 4)
proposals.append(proposal)
_cur += (H * W)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(
-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(
memory_padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(
~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
output_memory = self.enc_output_norm(self.enc_output(output_memory))
return output_memory, output_proposals
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""Get the reference points used in decoder.
Args:
spatial_shapes (Tensor): The shape of all
feature maps, has shape (num_level, 2).
valid_ratios (Tensor): The radios of valid
points on the feature map, has shape
(bs, num_levels, 2)
device (obj:`device`): The device where
reference_points should be.
Returns:
Tensor: reference points used in decoder, has \
shape (bs, num_keys, num_levels, 2).
"""
reference_points_list = []
for lvl, (H, W) in enumerate(spatial_shapes):
# TODO check this 0.5
ref_y, ref_x = torch.meshgrid(
torch.linspace(
0.5, H - 0.5, H, dtype=torch.float32, device=device),
torch.linspace(
0.5, W - 0.5, W, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 1] * H)
ref_x = ref_x.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 0] * W)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def get_valid_ratio(self, mask):
"""Get the valid radios of feature maps of all level."""
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def get_proposal_pos_embed(self,
proposals,
num_pos_feats=128,
temperature=10000):
"""Get the position embedding of proposal."""
scale = 2 * math.pi
dim_t = torch.arange(
num_pos_feats, dtype=torch.float32, device=proposals.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
# N, L, 4
proposals = proposals.sigmoid() * scale
# N, L, 4, 128
pos = proposals[:, :, :, None] / dim_t
# N, L, 4, 64, 2
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
dim=4).flatten(2)
return pos
def forward(self,
mlvl_feats,
mlvl_masks,
query_embed,
mlvl_pos_embeds,
reg_branches=None,
cls_branches=None,
**kwargs):
"""Forward function for `Transformer`.
Args:
mlvl_feats (list(Tensor)): Input queries from
different level. Each element has shape
[bs, embed_dims, h, w].
mlvl_masks (list(Tensor)): The key_padding_mask from
different level used for encoder and decoder,
each element has shape [bs, h, w].
query_embed (Tensor): The query embedding for decoder,
with shape [num_query, c].
mlvl_pos_embeds (list(Tensor)): The positional encoding
of feats from different level, has the shape
[bs, embed_dims, h, w].
reg_branches (obj:`nn.ModuleList`): Regression heads for
feature maps from each decoder layer. Only would
be passed when
`with_box_refine` is True. Default to None.
cls_branches (obj:`nn.ModuleList`): Classification heads
for feature maps from each decoder layer. Only would
be passed when `as_two_stage`
is True. Default to None.
Returns:
tuple[Tensor]: results of decoder containing the following tensor.
- inter_states: Outputs from decoder. If
return_intermediate_dec is True output has shape \
(num_dec_layers, bs, num_query, embed_dims), else has \
shape (1, bs, num_query, embed_dims).
- init_reference_out: The initial value of reference \
points, has shape (bs, num_queries, 4).
- inter_references_out: The internal value of reference \
points in decoder, has shape \
(num_dec_layers, bs,num_query, embed_dims)
- enc_outputs_class: The classification score of \
proposals generated from \
encoder's feature maps, has shape \
(batch, h*w, num_classes). \
Only would be returned when `as_two_stage` is True, \
otherwise None.
- enc_outputs_coord_unact: The regression results \
generated from encoder's feature maps., has shape \
(batch, h*w, 4). Only would \
be returned when `as_two_stage` is True, \
otherwise None.
"""
assert self.as_two_stage or query_embed is not None
feat_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (feat, mask, pos_embed) in enumerate(
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
bs, c, h, w = feat.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
feat = feat.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
feat_flatten.append(feat)
mask_flatten.append(mask)
feat_flatten = torch.cat(feat_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(
spatial_shapes, dtype=torch.long, device=feat_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros(
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack(
[self.get_valid_ratio(m) for m in mlvl_masks], 1)
reference_points = \
self.get_reference_points(spatial_shapes,
valid_ratios,
device=feat.device)
feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims)
lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
1, 0, 2) # (H*W, bs, embed_dims)
memory = self.encoder(
query=feat_flatten,
key=None,
value=None,
query_pos=lvl_pos_embed_flatten,
query_key_padding_mask=mask_flatten,
spatial_shapes=spatial_shapes,
reference_points=reference_points,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
**kwargs)
memory = memory.permute(1, 0, 2)
bs, _, c = memory.shape
if self.as_two_stage:
output_memory, output_proposals = \
self.gen_encoder_output_proposals(
memory, mask_flatten, spatial_shapes)
enc_outputs_class = cls_branches[self.decoder.num_layers](
output_memory)
enc_outputs_coord_unact = \
reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
topk = self.two_stage_num_proposals
# We only use the first channel in enc_outputs_class as foreground,
# the other (num_classes - 1) channels are actually not used.
# Its targets are set to be 0s, which indicates the first
# class (foreground) because we use [0, num_classes - 1] to
# indicate class labels, background class is indicated by
# num_classes (similar convention in RPN).
# See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
# This follows the official implementation of Deformable DETR.
topk_proposals = torch.topk(
enc_outputs_class[..., 0], topk, dim=1)[1]
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid()
init_reference_out = reference_points
pos_trans_out = self.pos_trans_norm(
self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
query_pos, query = torch.split(pos_trans_out, c, dim=2)
else:
query_pos, query = torch.split(query_embed, c, dim=1)
query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
query = query.unsqueeze(0).expand(bs, -1, -1)
reference_points = self.reference_points(query_pos).sigmoid()
init_reference_out = reference_points
# decoder
query = query.permute(1, 0, 2)
memory = memory.permute(1, 0, 2)
query_pos = query_pos.permute(1, 0, 2)
inter_states, inter_references = self.decoder(
query=query,
key=None,
value=memory,
query_pos=query_pos,
key_padding_mask=mask_flatten,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reg_branches=reg_branches,
**kwargs)
inter_references_out = inter_references
if self.as_two_stage:
return inter_states, init_reference_out,\
inter_references_out, enc_outputs_class,\
enc_outputs_coord_unact
return inter_states, init_reference_out, \
inter_references_out, None, None
@TRANSFORMER.register_module()
class DynamicConv(BaseModule):
"""Implements Dynamic Convolution.
This module generate parameters for each sample and
use bmm to implement 1*1 convolution. Code is modified
from the `official github repo <https://github.com/PeizeSun/
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ .
Args:
in_channels (int): The input feature channel.
Defaults to 256.
feat_channels (int): The inner feature channel.
Defaults to 64.
out_channels (int, optional): The output feature channel.
When not specified, it will be set to `in_channels`
by default
input_feat_shape (int): The shape of input feature.
Defaults to 7.
with_proj (bool): Project two-dimentional feature to
one-dimentional feature. Default to True.
act_cfg (dict): The activation config for DynamicConv.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
in_channels=256,
feat_channels=64,
out_channels=None,
input_feat_shape=7,
with_proj=True,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
init_cfg=None):
super(DynamicConv, self).__init__(init_cfg)
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.input_feat_shape = input_feat_shape
self.with_proj = with_proj
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.in_channels * self.feat_channels
self.num_params_out = self.out_channels * self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1]
self.activation = build_activation_layer(act_cfg)
num_output = self.out_channels * input_feat_shape**2
if self.with_proj:
self.fc_layer = nn.Linear(num_output, self.out_channels)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, param_feature, input_feature):
"""Forward function for `DynamicConv`.
Args:
param_feature (Tensor): The feature can be used
to generate the parameter, has shape
(num_all_proposals, in_channels).
input_feature (Tensor): Feature that
interact with parameters, has shape
(num_all_proposals, in_channels, H, W).
Returns:
Tensor: The output feature has shape
(num_all_proposals, out_channels).
"""
input_feature = input_feature.flatten(2).permute(2, 0, 1)
input_feature = input_feature.permute(1, 0, 2)
parameters = self.dynamic_layer(param_feature)
param_in = parameters[:, :self.num_params_in].view(
-1, self.in_channels, self.feat_channels)
param_out = parameters[:, -self.num_params_out:].view(
-1, self.feat_channels, self.out_channels)
# input_feature has shape (num_all_proposals, H*W, in_channels)
# param_in has shape (num_all_proposals, in_channels, feat_channels)
# feature has shape (num_all_proposals, H*W, feat_channels)
features = torch.bmm(input_feature, param_in)
features = self.norm_in(features)
features = self.activation(features)
# param_out has shape (batch_size, feat_channels, out_channels)
features = torch.bmm(features, param_out)
features = self.norm_out(features)
features = self.activation(features)
if self.with_proj:
features = features.flatten(1)
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
|