File size: 10,136 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..builder import LOSSES
from .accuracy import accuracy
from .cross_entropy_loss import cross_entropy
from .utils import weight_reduce_loss


def seesaw_ce_loss(cls_score,
                   labels,
                   label_weights,
                   cum_samples,
                   num_classes,
                   p,
                   q,
                   eps,
                   reduction='mean',
                   avg_factor=None):
    """Calculate the Seesaw CrossEntropy loss.

    Args:
        cls_score (torch.Tensor): The prediction with shape (N, C),
             C is the number of classes.
        labels (torch.Tensor): The learning label of the prediction.
        label_weights (torch.Tensor): Sample-wise loss weight.
        cum_samples (torch.Tensor): Cumulative samples for each category.
        num_classes (int): The number of classes.
        p (float): The ``p`` in the mitigation factor.
        q (float): The ``q`` in the compenstation factor.
        eps (float): The minimal value of divisor to smooth
             the computation of compensation factor
        reduction (str, optional): The method used to reduce the loss.
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.

    Returns:
        torch.Tensor: The calculated loss
    """
    assert cls_score.size(-1) == num_classes
    assert len(cum_samples) == num_classes

    onehot_labels = F.one_hot(labels, num_classes)
    seesaw_weights = cls_score.new_ones(onehot_labels.size())

    # mitigation factor
    if p > 0:
        sample_ratio_matrix = cum_samples[None, :].clamp(
            min=1) / cum_samples[:, None].clamp(min=1)
        index = (sample_ratio_matrix < 1.0).float()
        sample_weights = sample_ratio_matrix.pow(p) * index + (1 - index)
        mitigation_factor = sample_weights[labels.long(), :]
        seesaw_weights = seesaw_weights * mitigation_factor

    # compensation factor
    if q > 0:
        scores = F.softmax(cls_score.detach(), dim=1)
        self_scores = scores[
            torch.arange(0, len(scores)).to(scores.device).long(),
            labels.long()]
        score_matrix = scores / self_scores[:, None].clamp(min=eps)
        index = (score_matrix > 1.0).float()
        compensation_factor = score_matrix.pow(q) * index + (1 - index)
        seesaw_weights = seesaw_weights * compensation_factor

    cls_score = cls_score + (seesaw_weights.log() * (1 - onehot_labels))

    loss = F.cross_entropy(cls_score, labels, weight=None, reduction='none')

    if label_weights is not None:
        label_weights = label_weights.float()
    loss = weight_reduce_loss(
        loss, weight=label_weights, reduction=reduction, avg_factor=avg_factor)
    return loss


@LOSSES.register_module()
class SeesawLoss(nn.Module):
    """
    Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021)
    arXiv: https://arxiv.org/abs/2008.10032

    Args:
        use_sigmoid (bool, optional): Whether the prediction uses sigmoid
             of softmax. Only False is supported.
        p (float, optional): The ``p`` in the mitigation factor.
             Defaults to 0.8.
        q (float, optional): The ``q`` in the compenstation factor.
             Defaults to 2.0.
        num_classes (int, optional): The number of classes.
             Default to 1203 for LVIS v1 dataset.
        eps (float, optional): The minimal value of divisor to smooth
             the computation of compensation factor
        reduction (str, optional): The method that reduces the loss to a
             scalar. Options are "none", "mean" and "sum".
        loss_weight (float, optional): The weight of the loss. Defaults to 1.0
        return_dict (bool, optional): Whether return the losses as a dict.
             Default to True.
    """

    def __init__(self,
                 use_sigmoid=False,
                 p=0.8,
                 q=2.0,
                 num_classes=1203,
                 eps=1e-2,
                 reduction='mean',
                 loss_weight=1.0,
                 return_dict=True):
        super(SeesawLoss, self).__init__()
        assert not use_sigmoid
        self.use_sigmoid = False
        self.p = p
        self.q = q
        self.num_classes = num_classes
        self.eps = eps
        self.reduction = reduction
        self.loss_weight = loss_weight
        self.return_dict = return_dict

        # 0 for pos, 1 for neg
        self.cls_criterion = seesaw_ce_loss

        # cumulative samples for each category
        self.register_buffer(
            'cum_samples',
            torch.zeros(self.num_classes + 1, dtype=torch.float))

        # custom output channels of the classifier
        self.custom_cls_channels = True
        # custom activation of cls_score
        self.custom_activation = True
        # custom accuracy of the classsifier
        self.custom_accuracy = True

    def _split_cls_score(self, cls_score):
        # split cls_score to cls_score_classes and cls_score_objectness
        assert cls_score.size(-1) == self.num_classes + 2
        cls_score_classes = cls_score[..., :-2]
        cls_score_objectness = cls_score[..., -2:]
        return cls_score_classes, cls_score_objectness

    def get_cls_channels(self, num_classes):
        """Get custom classification channels.

        Args:
            num_classes (int): The number of classes.

        Returns:
            int: The custom classification channels.
        """
        assert num_classes == self.num_classes
        return num_classes + 2

    def get_activation(self, cls_score):
        """Get custom activation of cls_score.

        Args:
            cls_score (torch.Tensor): The prediction with shape (N, C + 2).

        Returns:
            torch.Tensor: The custom activation of cls_score with shape
                 (N, C + 1).
        """
        cls_score_classes, cls_score_objectness = self._split_cls_score(
            cls_score)
        score_classes = F.softmax(cls_score_classes, dim=-1)
        score_objectness = F.softmax(cls_score_objectness, dim=-1)
        score_pos = score_objectness[..., [0]]
        score_neg = score_objectness[..., [1]]
        score_classes = score_classes * score_pos
        scores = torch.cat([score_classes, score_neg], dim=-1)
        return scores

    def get_accuracy(self, cls_score, labels):
        """Get custom accuracy w.r.t. cls_score and labels.

        Args:
            cls_score (torch.Tensor): The prediction with shape (N, C + 2).
            labels (torch.Tensor): The learning label of the prediction.

        Returns:
            Dict [str, torch.Tensor]: The accuracy for objectness and classes,
                 respectively.
        """
        pos_inds = labels < self.num_classes
        obj_labels = (labels == self.num_classes).long()
        cls_score_classes, cls_score_objectness = self._split_cls_score(
            cls_score)
        acc_objectness = accuracy(cls_score_objectness, obj_labels)
        acc_classes = accuracy(cls_score_classes[pos_inds], labels[pos_inds])
        acc = dict()
        acc['acc_objectness'] = acc_objectness
        acc['acc_classes'] = acc_classes
        return acc

    def forward(self,
                cls_score,
                labels,
                label_weights=None,
                avg_factor=None,
                reduction_override=None):
        """Forward function.

        Args:
            cls_score (torch.Tensor): The prediction with shape (N, C + 2).
            labels (torch.Tensor): The learning label of the prediction.
            label_weights (torch.Tensor, optional): Sample-wise loss weight.
            avg_factor (int, optional): Average factor that is used to average
                 the loss. Defaults to None.
            reduction (str, optional): The method used to reduce the loss.
                 Options are "none", "mean" and "sum".
        Returns:
            torch.Tensor | Dict [str, torch.Tensor]:
                 if return_dict == False: The calculated loss |
                 if return_dict == True: The dict of calculated losses
                 for objectness and classes, respectively.
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        assert cls_score.size(-1) == self.num_classes + 2
        pos_inds = labels < self.num_classes
        # 0 for pos, 1 for neg
        obj_labels = (labels == self.num_classes).long()

        # accumulate the samples for each category
        unique_labels = labels.unique()
        for u_l in unique_labels:
            inds_ = labels == u_l.item()
            self.cum_samples[u_l] += inds_.sum()

        if label_weights is not None:
            label_weights = label_weights.float()
        else:
            label_weights = labels.new_ones(labels.size(), dtype=torch.float)

        cls_score_classes, cls_score_objectness = self._split_cls_score(
            cls_score)
        # calculate loss_cls_classes (only need pos samples)
        if pos_inds.sum() > 0:
            loss_cls_classes = self.loss_weight * self.cls_criterion(
                cls_score_classes[pos_inds], labels[pos_inds],
                label_weights[pos_inds], self.cum_samples[:self.num_classes],
                self.num_classes, self.p, self.q, self.eps, reduction,
                avg_factor)
        else:
            loss_cls_classes = cls_score_classes[pos_inds].sum()
        # calculate loss_cls_objectness
        loss_cls_objectness = self.loss_weight * cross_entropy(
            cls_score_objectness, obj_labels, label_weights, reduction,
            avg_factor)

        if self.return_dict:
            loss_cls = dict()
            loss_cls['loss_cls_objectness'] = loss_cls_objectness
            loss_cls['loss_cls_classes'] = loss_cls_classes
        else:
            loss_cls = loss_cls_classes + loss_cls_objectness
        return loss_cls