Spaces:
Runtime error
Runtime error
File size: 10,136 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..builder import LOSSES
from .accuracy import accuracy
from .cross_entropy_loss import cross_entropy
from .utils import weight_reduce_loss
def seesaw_ce_loss(cls_score,
labels,
label_weights,
cum_samples,
num_classes,
p,
q,
eps,
reduction='mean',
avg_factor=None):
"""Calculate the Seesaw CrossEntropy loss.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C),
C is the number of classes.
labels (torch.Tensor): The learning label of the prediction.
label_weights (torch.Tensor): Sample-wise loss weight.
cum_samples (torch.Tensor): Cumulative samples for each category.
num_classes (int): The number of classes.
p (float): The ``p`` in the mitigation factor.
q (float): The ``q`` in the compenstation factor.
eps (float): The minimal value of divisor to smooth
the computation of compensation factor
reduction (str, optional): The method used to reduce the loss.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
Returns:
torch.Tensor: The calculated loss
"""
assert cls_score.size(-1) == num_classes
assert len(cum_samples) == num_classes
onehot_labels = F.one_hot(labels, num_classes)
seesaw_weights = cls_score.new_ones(onehot_labels.size())
# mitigation factor
if p > 0:
sample_ratio_matrix = cum_samples[None, :].clamp(
min=1) / cum_samples[:, None].clamp(min=1)
index = (sample_ratio_matrix < 1.0).float()
sample_weights = sample_ratio_matrix.pow(p) * index + (1 - index)
mitigation_factor = sample_weights[labels.long(), :]
seesaw_weights = seesaw_weights * mitigation_factor
# compensation factor
if q > 0:
scores = F.softmax(cls_score.detach(), dim=1)
self_scores = scores[
torch.arange(0, len(scores)).to(scores.device).long(),
labels.long()]
score_matrix = scores / self_scores[:, None].clamp(min=eps)
index = (score_matrix > 1.0).float()
compensation_factor = score_matrix.pow(q) * index + (1 - index)
seesaw_weights = seesaw_weights * compensation_factor
cls_score = cls_score + (seesaw_weights.log() * (1 - onehot_labels))
loss = F.cross_entropy(cls_score, labels, weight=None, reduction='none')
if label_weights is not None:
label_weights = label_weights.float()
loss = weight_reduce_loss(
loss, weight=label_weights, reduction=reduction, avg_factor=avg_factor)
return loss
@LOSSES.register_module()
class SeesawLoss(nn.Module):
"""
Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021)
arXiv: https://arxiv.org/abs/2008.10032
Args:
use_sigmoid (bool, optional): Whether the prediction uses sigmoid
of softmax. Only False is supported.
p (float, optional): The ``p`` in the mitigation factor.
Defaults to 0.8.
q (float, optional): The ``q`` in the compenstation factor.
Defaults to 2.0.
num_classes (int, optional): The number of classes.
Default to 1203 for LVIS v1 dataset.
eps (float, optional): The minimal value of divisor to smooth
the computation of compensation factor
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
return_dict (bool, optional): Whether return the losses as a dict.
Default to True.
"""
def __init__(self,
use_sigmoid=False,
p=0.8,
q=2.0,
num_classes=1203,
eps=1e-2,
reduction='mean',
loss_weight=1.0,
return_dict=True):
super(SeesawLoss, self).__init__()
assert not use_sigmoid
self.use_sigmoid = False
self.p = p
self.q = q
self.num_classes = num_classes
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
self.return_dict = return_dict
# 0 for pos, 1 for neg
self.cls_criterion = seesaw_ce_loss
# cumulative samples for each category
self.register_buffer(
'cum_samples',
torch.zeros(self.num_classes + 1, dtype=torch.float))
# custom output channels of the classifier
self.custom_cls_channels = True
# custom activation of cls_score
self.custom_activation = True
# custom accuracy of the classsifier
self.custom_accuracy = True
def _split_cls_score(self, cls_score):
# split cls_score to cls_score_classes and cls_score_objectness
assert cls_score.size(-1) == self.num_classes + 2
cls_score_classes = cls_score[..., :-2]
cls_score_objectness = cls_score[..., -2:]
return cls_score_classes, cls_score_objectness
def get_cls_channels(self, num_classes):
"""Get custom classification channels.
Args:
num_classes (int): The number of classes.
Returns:
int: The custom classification channels.
"""
assert num_classes == self.num_classes
return num_classes + 2
def get_activation(self, cls_score):
"""Get custom activation of cls_score.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
Returns:
torch.Tensor: The custom activation of cls_score with shape
(N, C + 1).
"""
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
score_classes = F.softmax(cls_score_classes, dim=-1)
score_objectness = F.softmax(cls_score_objectness, dim=-1)
score_pos = score_objectness[..., [0]]
score_neg = score_objectness[..., [1]]
score_classes = score_classes * score_pos
scores = torch.cat([score_classes, score_neg], dim=-1)
return scores
def get_accuracy(self, cls_score, labels):
"""Get custom accuracy w.r.t. cls_score and labels.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
labels (torch.Tensor): The learning label of the prediction.
Returns:
Dict [str, torch.Tensor]: The accuracy for objectness and classes,
respectively.
"""
pos_inds = labels < self.num_classes
obj_labels = (labels == self.num_classes).long()
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
acc_objectness = accuracy(cls_score_objectness, obj_labels)
acc_classes = accuracy(cls_score_classes[pos_inds], labels[pos_inds])
acc = dict()
acc['acc_objectness'] = acc_objectness
acc['acc_classes'] = acc_classes
return acc
def forward(self,
cls_score,
labels,
label_weights=None,
avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
labels (torch.Tensor): The learning label of the prediction.
label_weights (torch.Tensor, optional): Sample-wise loss weight.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
Returns:
torch.Tensor | Dict [str, torch.Tensor]:
if return_dict == False: The calculated loss |
if return_dict == True: The dict of calculated losses
for objectness and classes, respectively.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
assert cls_score.size(-1) == self.num_classes + 2
pos_inds = labels < self.num_classes
# 0 for pos, 1 for neg
obj_labels = (labels == self.num_classes).long()
# accumulate the samples for each category
unique_labels = labels.unique()
for u_l in unique_labels:
inds_ = labels == u_l.item()
self.cum_samples[u_l] += inds_.sum()
if label_weights is not None:
label_weights = label_weights.float()
else:
label_weights = labels.new_ones(labels.size(), dtype=torch.float)
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
# calculate loss_cls_classes (only need pos samples)
if pos_inds.sum() > 0:
loss_cls_classes = self.loss_weight * self.cls_criterion(
cls_score_classes[pos_inds], labels[pos_inds],
label_weights[pos_inds], self.cum_samples[:self.num_classes],
self.num_classes, self.p, self.q, self.eps, reduction,
avg_factor)
else:
loss_cls_classes = cls_score_classes[pos_inds].sum()
# calculate loss_cls_objectness
loss_cls_objectness = self.loss_weight * cross_entropy(
cls_score_objectness, obj_labels, label_weights, reduction,
avg_factor)
if self.return_dict:
loss_cls = dict()
loss_cls['loss_cls_objectness'] = loss_cls_objectness
loss_cls['loss_cls_classes'] = loss_cls_classes
else:
loss_cls = loss_cls_classes + loss_cls_objectness
return loss_cls
|