File size: 6,439 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from scipy.optimize import linear_sum_assignment

from ..builder import BBOX_ASSIGNERS
from ..match_costs import build_match_cost
from ..transforms import bbox_cxcywh_to_xyxy
from .assign_result import AssignResult
from .base_assigner import BaseAssigner


@BBOX_ASSIGNERS.register_module()
class HungarianAssigner(BaseAssigner):
    """Computes one-to-one matching between predictions and ground truth.

    This class computes an assignment between the targets and the predictions
    based on the costs. The costs are weighted sum of three components:
    classification cost, regression L1 cost and regression iou cost. The
    targets don't include the no_object, so generally there are more
    predictions than targets. After the one-to-one matching, the un-matched
    are treated as backgrounds. Thus each query prediction will be assigned
    with `0` or a positive integer indicating the ground truth index:

    - 0: negative sample, no assigned gt
    - positive integer: positive sample, index (1-based) of assigned gt

    Args:
        cls_weight (int | float, optional): The scale factor for classification
            cost. Default 1.0.
        bbox_weight (int | float, optional): The scale factor for regression
            L1 cost. Default 1.0.
        iou_weight (int | float, optional): The scale factor for regression
            iou cost. Default 1.0.
        iou_calculator (dict | optional): The config for the iou calculation.
            Default type `BboxOverlaps2D`.
        iou_mode (str | optional): "iou" (intersection over union), "iof"
                (intersection over foreground), or "giou" (generalized
                intersection over union). Default "giou".
    """

    def __init__(self,
                 cls_cost=dict(type='ClassificationCost', weight=1.),
                 reg_cost=dict(type='BBoxL1Cost', weight=1.0),
                 iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0)):
        self.cls_cost = build_match_cost(cls_cost)
        self.reg_cost = build_match_cost(reg_cost)
        self.iou_cost = build_match_cost(iou_cost)

    def assign(self,
               bbox_pred,
               cls_pred,
               gt_bboxes,
               gt_labels,
               img_meta,
               gt_bboxes_ignore=None,
               eps=1e-7):
        """Computes one-to-one matching based on the weighted costs.

        This method assign each query prediction to a ground truth or
        background. The `assigned_gt_inds` with -1 means don't care,
        0 means negative sample, and positive number is the index (1-based)
        of assigned gt.
        The assignment is done in the following steps, the order matters.

        1. assign every prediction to -1
        2. compute the weighted costs
        3. do Hungarian matching on CPU based on the costs
        4. assign all to 0 (background) first, then for each matched pair
           between predictions and gts, treat this prediction as foreground
           and assign the corresponding gt index (plus 1) to it.

        Args:
            bbox_pred (Tensor): Predicted boxes with normalized coordinates
                (cx, cy, w, h), which are all in range [0, 1]. Shape
                [num_query, 4].
            cls_pred (Tensor): Predicted classification logits, shape
                [num_query, num_class].
            gt_bboxes (Tensor): Ground truth boxes with unnormalized
                coordinates (x1, y1, x2, y2). Shape [num_gt, 4].
            gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).
            img_meta (dict): Meta information for current image.
            gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
                labelled as `ignored`. Default None.
            eps (int | float, optional): A value added to the denominator for
                numerical stability. Default 1e-7.

        Returns:
            :obj:`AssignResult`: The assigned result.
        """
        assert gt_bboxes_ignore is None, \
            'Only case when gt_bboxes_ignore is None is supported.'
        num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0)

        # 1. assign -1 by default
        assigned_gt_inds = bbox_pred.new_full((num_bboxes, ),
                                              -1,
                                              dtype=torch.long)
        assigned_labels = bbox_pred.new_full((num_bboxes, ),
                                             -1,
                                             dtype=torch.long)
        if num_gts == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            if num_gts == 0:
                # No ground truth, assign all to background
                assigned_gt_inds[:] = 0
            return AssignResult(
                num_gts, assigned_gt_inds, None, labels=assigned_labels)
        img_h, img_w, _ = img_meta['img_shape']
        factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)

        # 2. compute the weighted costs
        # classification and bboxcost.
        cls_cost = self.cls_cost(cls_pred, gt_labels)
        # regression L1 cost
        normalize_gt_bboxes = gt_bboxes / factor
        reg_cost = self.reg_cost(bbox_pred, normalize_gt_bboxes)
        # regression iou cost, defaultly giou is used in official DETR.
        bboxes = bbox_cxcywh_to_xyxy(bbox_pred) * factor
        iou_cost = self.iou_cost(bboxes, gt_bboxes)
        # weighted sum of above three costs
        cost = cls_cost + reg_cost + iou_cost

        # 3. do Hungarian matching on CPU using linear_sum_assignment
        cost = cost.detach().cpu()
        matched_row_inds, matched_col_inds = linear_sum_assignment(cost)
        matched_row_inds = torch.from_numpy(matched_row_inds).to(
            bbox_pred.device)
        matched_col_inds = torch.from_numpy(matched_col_inds).to(
            bbox_pred.device)

        # 4. assign backgrounds and foregrounds
        # assign all indices to backgrounds first
        assigned_gt_inds[:] = 0
        # assign foregrounds based on matching results
        assigned_gt_inds[matched_row_inds] = matched_col_inds + 1
        assigned_labels[matched_row_inds] = gt_labels[matched_col_inds]
        return AssignResult(
            num_gts, assigned_gt_inds, None, labels=assigned_labels)