Spaces:
Runtime error
Runtime error
File size: 8,962 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
def find_inside_bboxes(bboxes, img_h, img_w):
"""Find bboxes as long as a part of bboxes is inside the image.
Args:
bboxes (Tensor): Shape (N, 4).
img_h (int): Image height.
img_w (int): Image width.
Returns:
Tensor: Index of the remaining bboxes.
"""
inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \
& (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0)
return inside_inds
def bbox_flip(bboxes, img_shape, direction='horizontal'):
"""Flip bboxes horizontally or vertically.
Args:
bboxes (Tensor): Shape (..., 4*k)
img_shape (tuple): Image shape.
direction (str): Flip direction, options are "horizontal", "vertical",
"diagonal". Default: "horizontal"
Returns:
Tensor: Flipped bboxes.
"""
assert bboxes.shape[-1] % 4 == 0
assert direction in ['horizontal', 'vertical', 'diagonal']
flipped = bboxes.clone()
if direction == 'horizontal':
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
elif direction == 'vertical':
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
else:
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
return flipped
def bbox_mapping(bboxes,
img_shape,
scale_factor,
flip,
flip_direction='horizontal'):
"""Map bboxes from the original image scale to testing scale."""
new_bboxes = bboxes * bboxes.new_tensor(scale_factor)
if flip:
new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction)
return new_bboxes
def bbox_mapping_back(bboxes,
img_shape,
scale_factor,
flip,
flip_direction='horizontal'):
"""Map bboxes from testing scale to original image scale."""
new_bboxes = bbox_flip(bboxes, img_shape,
flip_direction) if flip else bboxes
new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor)
return new_bboxes.view(bboxes.shape)
def bbox2roi(bbox_list):
"""Convert a list of bboxes to roi format.
Args:
bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
of images.
Returns:
Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2]
"""
rois_list = []
for img_id, bboxes in enumerate(bbox_list):
if bboxes.size(0) > 0:
img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1)
else:
rois = bboxes.new_zeros((0, 5))
rois_list.append(rois)
rois = torch.cat(rois_list, 0)
return rois
def roi2bbox(rois):
"""Convert rois to bounding box format.
Args:
rois (torch.Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
list[torch.Tensor]: Converted boxes of corresponding rois.
"""
bbox_list = []
img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
for img_id in img_ids:
inds = (rois[:, 0] == img_id.item())
bbox = rois[inds, 1:]
bbox_list.append(bbox)
return bbox_list
def bbox2result(bboxes, labels, num_classes):
"""Convert detection results to a list of numpy arrays.
Args:
bboxes (torch.Tensor | np.ndarray): shape (n, 5)
labels (torch.Tensor | np.ndarray): shape (n, )
num_classes (int): class number, including background class
Returns:
list(ndarray): bbox results of each class
"""
if bboxes.shape[0] == 0:
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
else:
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
return [bboxes[labels == i, :] for i in range(num_classes)]
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (B, N, 2) or (N, 2).
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
max_shape (Sequence[int] or torch.Tensor or Sequence[
Sequence[int]],optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If priors shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]]
and the length of max_shape should also be B.
Returns:
Tensor: Boxes with shape (N, 4) or (B, N, 4)
"""
x1 = points[..., 0] - distance[..., 0]
y1 = points[..., 1] - distance[..., 1]
x2 = points[..., 0] + distance[..., 2]
y2 = points[..., 1] + distance[..., 3]
bboxes = torch.stack([x1, y1, x2, y2], -1)
if max_shape is not None:
if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export():
# speed up
bboxes[:, 0::2].clamp_(min=0, max=max_shape[1])
bboxes[:, 1::2].clamp_(min=0, max=max_shape[0])
return bboxes
# clip bboxes with dynamic `min` and `max` for onnx
if torch.onnx.is_in_onnx_export():
from mmdet.core.export import dynamic_clip_for_onnx
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return bboxes
if not isinstance(max_shape, torch.Tensor):
max_shape = x1.new_tensor(max_shape)
max_shape = max_shape[..., :2].type_as(x1)
if max_shape.ndim == 2:
assert bboxes.ndim == 3
assert max_shape.size(0) == bboxes.size(0)
min_xy = x1.new_tensor(0)
max_xy = torch.cat([max_shape, max_shape],
dim=-1).flip(-1).unsqueeze(-2)
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
return bboxes
def bbox2distance(points, bbox, max_dis=None, eps=0.1):
"""Decode bounding box based on distances.
Args:
points (Tensor): Shape (n, 2), [x, y].
bbox (Tensor): Shape (n, 4), "xyxy" format
max_dis (float): Upper bound of the distance.
eps (float): a small value to ensure target < max_dis, instead <=
Returns:
Tensor: Decoded distances.
"""
left = points[:, 0] - bbox[:, 0]
top = points[:, 1] - bbox[:, 1]
right = bbox[:, 2] - points[:, 0]
bottom = bbox[:, 3] - points[:, 1]
if max_dis is not None:
left = left.clamp(min=0, max=max_dis - eps)
top = top.clamp(min=0, max=max_dis - eps)
right = right.clamp(min=0, max=max_dis - eps)
bottom = bottom.clamp(min=0, max=max_dis - eps)
return torch.stack([left, top, right, bottom], -1)
def bbox_rescale(bboxes, scale_factor=1.0):
"""Rescale bounding box w.r.t. scale_factor.
Args:
bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois
scale_factor (float): rescale factor
Returns:
Tensor: Rescaled bboxes.
"""
if bboxes.size(1) == 5:
bboxes_ = bboxes[:, 1:]
inds_ = bboxes[:, 0]
else:
bboxes_ = bboxes
cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5
cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5
w = bboxes_[:, 2] - bboxes_[:, 0]
h = bboxes_[:, 3] - bboxes_[:, 1]
w = w * scale_factor
h = h * scale_factor
x1 = cx - 0.5 * w
x2 = cx + 0.5 * w
y1 = cy - 0.5 * h
y2 = cy + 0.5 * h
if bboxes.size(1) == 5:
rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1)
else:
rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return rescaled_bboxes
def bbox_cxcywh_to_xyxy(bbox):
"""Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)]
return torch.cat(bbox_new, dim=-1)
def bbox_xyxy_to_cxcywh(bbox):
"""Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)]
return torch.cat(bbox_new, dim=-1)
|