File size: 2,164 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) OpenMMLab. All rights reserved.
from ..builder import DETECTORS
from .two_stage import TwoStageDetector


@DETECTORS.register_module()
class FastRCNN(TwoStageDetector):
    """Implementation of `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_"""

    def __init__(self,
                 backbone,
                 roi_head,
                 train_cfg,
                 test_cfg,
                 neck=None,
                 pretrained=None,
                 init_cfg=None):
        super(FastRCNN, self).__init__(
            backbone=backbone,
            neck=neck,
            roi_head=roi_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
            init_cfg=init_cfg)

    def forward_test(self, imgs, img_metas, proposals, **kwargs):
        """
        Args:
            imgs (List[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains all images in the batch.
            img_metas (List[List[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch.
            proposals (List[List[Tensor]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch. The Tensor should have a shape Px4, where
                P is the number of proposals.
        """
        for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
            if not isinstance(var, list):
                raise TypeError(f'{name} must be a list, but got {type(var)}')

        num_augs = len(imgs)
        if num_augs != len(img_metas):
            raise ValueError(f'num of augmentations ({len(imgs)}) '
                             f'!= num of image meta ({len(img_metas)})')

        if num_augs == 1:
            return self.simple_test(imgs[0], img_metas[0], proposals[0],
                                    **kwargs)
        else:
            # TODO: support test-time augmentation
            assert NotImplementedError