File size: 3,777 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.cnn.bricks import NonLocal2d
from mmcv.runner import BaseModule

from ..builder import NECKS


@NECKS.register_module()
class BFP(BaseModule):
    """BFP (Balanced Feature Pyramids)

    BFP takes multi-level features as inputs and gather them into a single one,
    then refine the gathered feature and scatter the refined results to
    multi-level features. This module is used in Libra R-CNN (CVPR 2019), see
    the paper `Libra R-CNN: Towards Balanced Learning for Object Detection
    <https://arxiv.org/abs/1904.02701>`_ for details.

    Args:
        in_channels (int): Number of input channels (feature maps of all levels
            should have the same channels).
        num_levels (int): Number of input feature levels.
        conv_cfg (dict): The config dict for convolution layers.
        norm_cfg (dict): The config dict for normalization layers.
        refine_level (int): Index of integration and refine level of BSF in
            multi-level features from bottom to top.
        refine_type (str): Type of the refine op, currently support
            [None, 'conv', 'non_local'].
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels,
                 num_levels,
                 refine_level=2,
                 refine_type=None,
                 conv_cfg=None,
                 norm_cfg=None,
                 init_cfg=dict(
                     type='Xavier', layer='Conv2d', distribution='uniform')):
        super(BFP, self).__init__(init_cfg)
        assert refine_type in [None, 'conv', 'non_local']

        self.in_channels = in_channels
        self.num_levels = num_levels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.refine_level = refine_level
        self.refine_type = refine_type
        assert 0 <= self.refine_level < self.num_levels

        if self.refine_type == 'conv':
            self.refine = ConvModule(
                self.in_channels,
                self.in_channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg)
        elif self.refine_type == 'non_local':
            self.refine = NonLocal2d(
                self.in_channels,
                reduction=1,
                use_scale=False,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg)

    def forward(self, inputs):
        """Forward function."""
        assert len(inputs) == self.num_levels

        # step 1: gather multi-level features by resize and average
        feats = []
        gather_size = inputs[self.refine_level].size()[2:]
        for i in range(self.num_levels):
            if i < self.refine_level:
                gathered = F.adaptive_max_pool2d(
                    inputs[i], output_size=gather_size)
            else:
                gathered = F.interpolate(
                    inputs[i], size=gather_size, mode='nearest')
            feats.append(gathered)

        bsf = sum(feats) / len(feats)

        # step 2: refine gathered features
        if self.refine_type is not None:
            bsf = self.refine(bsf)

        # step 3: scatter refined features to multi-levels by a residual path
        outs = []
        for i in range(self.num_levels):
            out_size = inputs[i].size()[2:]
            if i < self.refine_level:
                residual = F.interpolate(bsf, size=out_size, mode='nearest')
            else:
                residual = F.adaptive_max_pool2d(bsf, output_size=out_size)
            outs.append(residual + inputs[i])

        return tuple(outs)