File size: 3,509 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from torch.utils.checkpoint import checkpoint

from ..builder import NECKS


@NECKS.register_module()
class HRFPN(BaseModule):
    """HRFPN (High Resolution Feature Pyramids)

    paper: `High-Resolution Representations for Labeling Pixels and Regions
    <https://arxiv.org/abs/1904.04514>`_.

    Args:
        in_channels (list): number of channels for each branch.
        out_channels (int): output channels of feature pyramids.
        num_outs (int): number of output stages.
        pooling_type (str): pooling for generating feature pyramids
            from {MAX, AVG}.
        conv_cfg (dict): dictionary to construct and config conv layer.
        norm_cfg (dict): dictionary to construct and config norm layer.
        with_cp  (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        stride (int): stride of 3x3 convolutional layers
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_outs=5,
                 pooling_type='AVG',
                 conv_cfg=None,
                 norm_cfg=None,
                 with_cp=False,
                 stride=1,
                 init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')):
        super(HRFPN, self).__init__(init_cfg)
        assert isinstance(in_channels, list)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_ins = len(in_channels)
        self.num_outs = num_outs
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.reduction_conv = ConvModule(
            sum(in_channels),
            out_channels,
            kernel_size=1,
            conv_cfg=self.conv_cfg,
            act_cfg=None)

        self.fpn_convs = nn.ModuleList()
        for i in range(self.num_outs):
            self.fpn_convs.append(
                ConvModule(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    padding=1,
                    stride=stride,
                    conv_cfg=self.conv_cfg,
                    act_cfg=None))

        if pooling_type == 'MAX':
            self.pooling = F.max_pool2d
        else:
            self.pooling = F.avg_pool2d

    def forward(self, inputs):
        """Forward function."""
        assert len(inputs) == self.num_ins
        outs = [inputs[0]]
        for i in range(1, self.num_ins):
            outs.append(
                F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear'))
        out = torch.cat(outs, dim=1)
        if out.requires_grad and self.with_cp:
            out = checkpoint(self.reduction_conv, out)
        else:
            out = self.reduction_conv(out)
        outs = [out]
        for i in range(1, self.num_outs):
            outs.append(self.pooling(out, kernel_size=2**i, stride=2**i))
        outputs = []

        for i in range(self.num_outs):
            if outs[i].requires_grad and self.with_cp:
                tmp_out = checkpoint(self.fpn_convs[i], outs[i])
            else:
                tmp_out = self.fpn_convs[i](outs[i])
            outputs.append(tmp_out)
        return tuple(outputs)