File size: 27,702 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn.functional as F

from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes,
                        merge_aug_masks, multiclass_nms)
from ..builder import HEADS, build_head, build_roi_extractor
from ..utils.brick_wrappers import adaptive_avg_pool2d
from .cascade_roi_head import CascadeRoIHead


@HEADS.register_module()
class HybridTaskCascadeRoIHead(CascadeRoIHead):
    """Hybrid task cascade roi head including one bbox head and one mask head.

    https://arxiv.org/abs/1901.07518
    """

    def __init__(self,
                 num_stages,
                 stage_loss_weights,
                 semantic_roi_extractor=None,
                 semantic_head=None,
                 semantic_fusion=('bbox', 'mask'),
                 interleaved=True,
                 mask_info_flow=True,
                 **kwargs):
        super(HybridTaskCascadeRoIHead,
              self).__init__(num_stages, stage_loss_weights, **kwargs)
        assert self.with_bbox
        assert not self.with_shared_head  # shared head is not supported

        if semantic_head is not None:
            self.semantic_roi_extractor = build_roi_extractor(
                semantic_roi_extractor)
            self.semantic_head = build_head(semantic_head)

        self.semantic_fusion = semantic_fusion
        self.interleaved = interleaved
        self.mask_info_flow = mask_info_flow

    @property
    def with_semantic(self):
        """bool: whether the head has semantic head"""
        if hasattr(self, 'semantic_head') and self.semantic_head is not None:
            return True
        else:
            return False

    def forward_dummy(self, x, proposals):
        """Dummy forward function."""
        outs = ()
        # semantic head
        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None
        # bbox heads
        rois = bbox2roi([proposals])
        for i in range(self.num_stages):
            bbox_results = self._bbox_forward(
                i, x, rois, semantic_feat=semantic_feat)
            outs = outs + (bbox_results['cls_score'],
                           bbox_results['bbox_pred'])
        # mask heads
        if self.with_mask:
            mask_rois = rois[:100]
            mask_roi_extractor = self.mask_roi_extractor[-1]
            mask_feats = mask_roi_extractor(
                x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
            if self.with_semantic and 'mask' in self.semantic_fusion:
                mask_semantic_feat = self.semantic_roi_extractor(
                    [semantic_feat], mask_rois)
                mask_feats = mask_feats + mask_semantic_feat
            last_feat = None
            for i in range(self.num_stages):
                mask_head = self.mask_head[i]
                if self.mask_info_flow:
                    mask_pred, last_feat = mask_head(mask_feats, last_feat)
                else:
                    mask_pred = mask_head(mask_feats)
                outs = outs + (mask_pred, )
        return outs

    def _bbox_forward_train(self,
                            stage,
                            x,
                            sampling_results,
                            gt_bboxes,
                            gt_labels,
                            rcnn_train_cfg,
                            semantic_feat=None):
        """Run forward function and calculate loss for box head in training."""
        bbox_head = self.bbox_head[stage]
        rois = bbox2roi([res.bboxes for res in sampling_results])
        bbox_results = self._bbox_forward(
            stage, x, rois, semantic_feat=semantic_feat)

        bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes,
                                             gt_labels, rcnn_train_cfg)
        loss_bbox = bbox_head.loss(bbox_results['cls_score'],
                                   bbox_results['bbox_pred'], rois,
                                   *bbox_targets)

        bbox_results.update(
            loss_bbox=loss_bbox,
            rois=rois,
            bbox_targets=bbox_targets,
        )
        return bbox_results

    def _mask_forward_train(self,
                            stage,
                            x,
                            sampling_results,
                            gt_masks,
                            rcnn_train_cfg,
                            semantic_feat=None):
        """Run forward function and calculate loss for mask head in
        training."""
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
        mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
                                        pos_rois)

        # semantic feature fusion
        # element-wise sum for original features and pooled semantic features
        if self.with_semantic and 'mask' in self.semantic_fusion:
            mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             pos_rois)
            if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
                mask_semantic_feat = F.adaptive_avg_pool2d(
                    mask_semantic_feat, mask_feats.shape[-2:])
            mask_feats = mask_feats + mask_semantic_feat

        # mask information flow
        # forward all previous mask heads to obtain last_feat, and fuse it
        # with the normal mask feature
        if self.mask_info_flow:
            last_feat = None
            for i in range(stage):
                last_feat = self.mask_head[i](
                    mask_feats, last_feat, return_logits=False)
            mask_pred = mask_head(mask_feats, last_feat, return_feat=False)
        else:
            mask_pred = mask_head(mask_feats, return_feat=False)

        mask_targets = mask_head.get_targets(sampling_results, gt_masks,
                                             rcnn_train_cfg)
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)

        mask_results = dict(loss_mask=loss_mask)
        return mask_results

    def _bbox_forward(self, stage, x, rois, semantic_feat=None):
        """Box head forward function used in both training and testing."""
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(
            x[:len(bbox_roi_extractor.featmap_strides)], rois)
        if self.with_semantic and 'bbox' in self.semantic_fusion:
            bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             rois)
            if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]:
                bbox_semantic_feat = adaptive_avg_pool2d(
                    bbox_semantic_feat, bbox_feats.shape[-2:])
            bbox_feats = bbox_feats + bbox_semantic_feat
        cls_score, bbox_pred = bbox_head(bbox_feats)

        bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred)
        return bbox_results

    def _mask_forward_test(self, stage, x, bboxes, semantic_feat=None):
        """Mask head forward function for testing."""
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        mask_rois = bbox2roi([bboxes])
        mask_feats = mask_roi_extractor(
            x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
        if self.with_semantic and 'mask' in self.semantic_fusion:
            mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             mask_rois)
            if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
                mask_semantic_feat = F.adaptive_avg_pool2d(
                    mask_semantic_feat, mask_feats.shape[-2:])
            mask_feats = mask_feats + mask_semantic_feat
        if self.mask_info_flow:
            last_feat = None
            last_pred = None
            for i in range(stage):
                mask_pred, last_feat = self.mask_head[i](mask_feats, last_feat)
                if last_pred is not None:
                    mask_pred = mask_pred + last_pred
                last_pred = mask_pred
            mask_pred = mask_head(mask_feats, last_feat, return_feat=False)
            if last_pred is not None:
                mask_pred = mask_pred + last_pred
        else:
            mask_pred = mask_head(mask_feats)
        return mask_pred

    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      gt_semantic_seg=None):
        """
        Args:
            x (list[Tensor]): list of multi-level img features.

            img_metas (list[dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.

            proposal_list (list[Tensors]): list of region proposals.

            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.

            gt_labels (list[Tensor]): class indices corresponding to each box

            gt_bboxes_ignore (None, list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

            gt_masks (None, Tensor) : true segmentation masks for each box
                used if the architecture supports a segmentation task.

            gt_semantic_seg (None, list[Tensor]): semantic segmentation masks
                used if the architecture supports semantic segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # semantic segmentation part
        # 2 outputs: segmentation prediction and embedded features
        losses = dict()
        if self.with_semantic:
            semantic_pred, semantic_feat = self.semantic_head(x)
            loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg)
            losses['loss_semantic_seg'] = loss_seg
        else:
            semantic_feat = None

        for i in range(self.num_stages):
            self.current_stage = i
            rcnn_train_cfg = self.train_cfg[i]
            lw = self.stage_loss_weights[i]

            # assign gts and sample proposals
            sampling_results = []
            bbox_assigner = self.bbox_assigner[i]
            bbox_sampler = self.bbox_sampler[i]
            num_imgs = len(img_metas)
            if gt_bboxes_ignore is None:
                gt_bboxes_ignore = [None for _ in range(num_imgs)]

            for j in range(num_imgs):
                assign_result = bbox_assigner.assign(proposal_list[j],
                                                     gt_bboxes[j],
                                                     gt_bboxes_ignore[j],
                                                     gt_labels[j])
                sampling_result = bbox_sampler.sample(
                    assign_result,
                    proposal_list[j],
                    gt_bboxes[j],
                    gt_labels[j],
                    feats=[lvl_feat[j][None] for lvl_feat in x])
                sampling_results.append(sampling_result)

            # bbox head forward and loss
            bbox_results = \
                self._bbox_forward_train(
                    i, x, sampling_results, gt_bboxes, gt_labels,
                    rcnn_train_cfg, semantic_feat)
            roi_labels = bbox_results['bbox_targets'][0]

            for name, value in bbox_results['loss_bbox'].items():
                losses[f's{i}.{name}'] = (
                    value * lw if 'loss' in name else value)

            # mask head forward and loss
            if self.with_mask:
                # interleaved execution: use regressed bboxes by the box branch
                # to train the mask branch
                if self.interleaved:
                    pos_is_gts = [res.pos_is_gt for res in sampling_results]
                    with torch.no_grad():
                        proposal_list = self.bbox_head[i].refine_bboxes(
                            bbox_results['rois'], roi_labels,
                            bbox_results['bbox_pred'], pos_is_gts, img_metas)
                        # re-assign and sample 512 RoIs from 512 RoIs
                        sampling_results = []
                        for j in range(num_imgs):
                            assign_result = bbox_assigner.assign(
                                proposal_list[j], gt_bboxes[j],
                                gt_bboxes_ignore[j], gt_labels[j])
                            sampling_result = bbox_sampler.sample(
                                assign_result,
                                proposal_list[j],
                                gt_bboxes[j],
                                gt_labels[j],
                                feats=[lvl_feat[j][None] for lvl_feat in x])
                            sampling_results.append(sampling_result)
                mask_results = self._mask_forward_train(
                    i, x, sampling_results, gt_masks, rcnn_train_cfg,
                    semantic_feat)
                for name, value in mask_results['loss_mask'].items():
                    losses[f's{i}.{name}'] = (
                        value * lw if 'loss' in name else value)

            # refine bboxes (same as Cascade R-CNN)
            if i < self.num_stages - 1 and not self.interleaved:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                with torch.no_grad():
                    proposal_list = self.bbox_head[i].refine_bboxes(
                        bbox_results['rois'], roi_labels,
                        bbox_results['bbox_pred'], pos_is_gts, img_metas)

        return losses

    def simple_test(self, x, proposal_list, img_metas, rescale=False):
        """Test without augmentation.

        Args:
            x (tuple[Tensor]): Features from upstream network. Each
                has shape (batch_size, c, h, w).
            proposal_list (list(Tensor)): Proposals from rpn head.
                Each has shape (num_proposals, 5), last dimension
                5 represent (x1, y1, x2, y2, score).
            img_metas (list[dict]): Meta information of images.
            rescale (bool): Whether to rescale the results to
                the original image. Default: True.

        Returns:
            list[list[np.ndarray]] or list[tuple]: When no mask branch,
            it is bbox results of each image and classes with type
            `list[list[np.ndarray]]`. The outer list
            corresponds to each image. The inner list
            corresponds to each class. When the model has mask branch,
            it contains bbox results and mask results.
            The outer list corresponds to each image, and first element
            of tuple is bbox results, second element is mask results.
        """
        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None

        num_imgs = len(proposal_list)
        img_shapes = tuple(meta['img_shape'] for meta in img_metas)
        ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
        scale_factors = tuple(meta['scale_factor'] for meta in img_metas)

        # "ms" in variable names means multi-stage
        ms_bbox_result = {}
        ms_segm_result = {}
        ms_scores = []
        rcnn_test_cfg = self.test_cfg

        rois = bbox2roi(proposal_list)

        if rois.shape[0] == 0:
            # There is no proposal in the whole batch
            bbox_results = [[
                np.zeros((0, 5), dtype=np.float32)
                for _ in range(self.bbox_head[-1].num_classes)
            ]] * num_imgs

            if self.with_mask:
                mask_classes = self.mask_head[-1].num_classes
                segm_results = [[[] for _ in range(mask_classes)]
                                for _ in range(num_imgs)]
                results = list(zip(bbox_results, segm_results))
            else:
                results = bbox_results

            return results

        for i in range(self.num_stages):
            bbox_head = self.bbox_head[i]
            bbox_results = self._bbox_forward(
                i, x, rois, semantic_feat=semantic_feat)
            # split batch bbox prediction back to each image
            cls_score = bbox_results['cls_score']
            bbox_pred = bbox_results['bbox_pred']
            num_proposals_per_img = tuple(len(p) for p in proposal_list)
            rois = rois.split(num_proposals_per_img, 0)
            cls_score = cls_score.split(num_proposals_per_img, 0)
            bbox_pred = bbox_pred.split(num_proposals_per_img, 0)
            ms_scores.append(cls_score)

            if i < self.num_stages - 1:
                refine_rois_list = []
                for j in range(num_imgs):
                    if rois[j].shape[0] > 0:
                        bbox_label = cls_score[j][:, :-1].argmax(dim=1)
                        refine_rois = bbox_head.regress_by_class(
                            rois[j], bbox_label, bbox_pred[j], img_metas[j])
                        refine_rois_list.append(refine_rois)
                rois = torch.cat(refine_rois_list)

        # average scores of each image by stages
        cls_score = [
            sum([score[i] for score in ms_scores]) / float(len(ms_scores))
            for i in range(num_imgs)
        ]

        # apply bbox post-processing to each image individually
        det_bboxes = []
        det_labels = []
        for i in range(num_imgs):
            det_bbox, det_label = self.bbox_head[-1].get_bboxes(
                rois[i],
                cls_score[i],
                bbox_pred[i],
                img_shapes[i],
                scale_factors[i],
                rescale=rescale,
                cfg=rcnn_test_cfg)
            det_bboxes.append(det_bbox)
            det_labels.append(det_label)
        bbox_result = [
            bbox2result(det_bboxes[i], det_labels[i],
                        self.bbox_head[-1].num_classes)
            for i in range(num_imgs)
        ]
        ms_bbox_result['ensemble'] = bbox_result

        if self.with_mask:
            if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
                mask_classes = self.mask_head[-1].num_classes
                segm_results = [[[] for _ in range(mask_classes)]
                                for _ in range(num_imgs)]
            else:
                if rescale and not isinstance(scale_factors[0], float):
                    scale_factors = [
                        torch.from_numpy(scale_factor).to(det_bboxes[0].device)
                        for scale_factor in scale_factors
                    ]
                _bboxes = [
                    det_bboxes[i][:, :4] *
                    scale_factors[i] if rescale else det_bboxes[i]
                    for i in range(num_imgs)
                ]
                mask_rois = bbox2roi(_bboxes)
                aug_masks = []
                mask_roi_extractor = self.mask_roi_extractor[-1]
                mask_feats = mask_roi_extractor(
                    x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                if self.with_semantic and 'mask' in self.semantic_fusion:
                    mask_semantic_feat = self.semantic_roi_extractor(
                        [semantic_feat], mask_rois)
                    mask_feats = mask_feats + mask_semantic_feat
                last_feat = None

                num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes)
                for i in range(self.num_stages):
                    mask_head = self.mask_head[i]
                    if self.mask_info_flow:
                        mask_pred, last_feat = mask_head(mask_feats, last_feat)
                    else:
                        mask_pred = mask_head(mask_feats)

                    # split batch mask prediction back to each image
                    mask_pred = mask_pred.split(num_bbox_per_img, 0)
                    aug_masks.append(
                        [mask.sigmoid().cpu().numpy() for mask in mask_pred])

                # apply mask post-processing to each image individually
                segm_results = []
                for i in range(num_imgs):
                    if det_bboxes[i].shape[0] == 0:
                        segm_results.append(
                            [[]
                             for _ in range(self.mask_head[-1].num_classes)])
                    else:
                        aug_mask = [mask[i] for mask in aug_masks]
                        merged_mask = merge_aug_masks(
                            aug_mask, [[img_metas[i]]] * self.num_stages,
                            rcnn_test_cfg)
                        segm_result = self.mask_head[-1].get_seg_masks(
                            merged_mask, _bboxes[i], det_labels[i],
                            rcnn_test_cfg, ori_shapes[i], scale_factors[i],
                            rescale)
                        segm_results.append(segm_result)
            ms_segm_result['ensemble'] = segm_results

        if self.with_mask:
            results = list(
                zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble']))
        else:
            results = ms_bbox_result['ensemble']

        return results

    def aug_test(self, img_feats, proposal_list, img_metas, rescale=False):
        """Test with augmentations.

        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        if self.with_semantic:
            semantic_feats = [
                self.semantic_head(feat)[1] for feat in img_feats
            ]
        else:
            semantic_feats = [None] * len(img_metas)

        rcnn_test_cfg = self.test_cfg
        aug_bboxes = []
        aug_scores = []
        for x, img_meta, semantic in zip(img_feats, img_metas, semantic_feats):
            # only one image in the batch
            img_shape = img_meta[0]['img_shape']
            scale_factor = img_meta[0]['scale_factor']
            flip = img_meta[0]['flip']
            flip_direction = img_meta[0]['flip_direction']

            proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
                                     scale_factor, flip, flip_direction)
            # "ms" in variable names means multi-stage
            ms_scores = []

            rois = bbox2roi([proposals])

            if rois.shape[0] == 0:
                # There is no proposal in the single image
                aug_bboxes.append(rois.new_zeros(0, 4))
                aug_scores.append(rois.new_zeros(0, 1))
                continue

            for i in range(self.num_stages):
                bbox_head = self.bbox_head[i]
                bbox_results = self._bbox_forward(
                    i, x, rois, semantic_feat=semantic)
                ms_scores.append(bbox_results['cls_score'])

                if i < self.num_stages - 1:
                    bbox_label = bbox_results['cls_score'].argmax(dim=1)
                    rois = bbox_head.regress_by_class(
                        rois, bbox_label, bbox_results['bbox_pred'],
                        img_meta[0])

            cls_score = sum(ms_scores) / float(len(ms_scores))
            bboxes, scores = self.bbox_head[-1].get_bboxes(
                rois,
                cls_score,
                bbox_results['bbox_pred'],
                img_shape,
                scale_factor,
                rescale=False,
                cfg=None)
            aug_bboxes.append(bboxes)
            aug_scores.append(scores)

        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes, merged_scores = merge_aug_bboxes(
            aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
        det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
                                                rcnn_test_cfg.score_thr,
                                                rcnn_test_cfg.nms,
                                                rcnn_test_cfg.max_per_img)

        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)

        if self.with_mask:
            if det_bboxes.shape[0] == 0:
                segm_result = [[]
                               for _ in range(self.mask_head[-1].num_classes)]
            else:
                aug_masks = []
                aug_img_metas = []
                for x, img_meta, semantic in zip(img_feats, img_metas,
                                                 semantic_feats):
                    img_shape = img_meta[0]['img_shape']
                    scale_factor = img_meta[0]['scale_factor']
                    flip = img_meta[0]['flip']
                    flip_direction = img_meta[0]['flip_direction']
                    _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
                                           scale_factor, flip, flip_direction)
                    mask_rois = bbox2roi([_bboxes])
                    mask_feats = self.mask_roi_extractor[-1](
                        x[:len(self.mask_roi_extractor[-1].featmap_strides)],
                        mask_rois)
                    if self.with_semantic:
                        semantic_feat = semantic
                        mask_semantic_feat = self.semantic_roi_extractor(
                            [semantic_feat], mask_rois)
                        if mask_semantic_feat.shape[-2:] != mask_feats.shape[
                                -2:]:
                            mask_semantic_feat = F.adaptive_avg_pool2d(
                                mask_semantic_feat, mask_feats.shape[-2:])
                        mask_feats = mask_feats + mask_semantic_feat
                    last_feat = None
                    for i in range(self.num_stages):
                        mask_head = self.mask_head[i]
                        if self.mask_info_flow:
                            mask_pred, last_feat = mask_head(
                                mask_feats, last_feat)
                        else:
                            mask_pred = mask_head(mask_feats)
                        aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                        aug_img_metas.append(img_meta)
                merged_masks = merge_aug_masks(aug_masks, aug_img_metas,
                                               self.test_cfg)

                ori_shape = img_metas[0][0]['ori_shape']
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks,
                    det_bboxes,
                    det_labels,
                    rcnn_test_cfg,
                    ori_shape,
                    scale_factor=1.0,
                    rescale=False)
            return [(bbox_result, segm_result)]
        else:
            return [bbox_result]