File size: 4,964 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) OpenMMLab. All rights reserved.

# This script consists of several convert functions which
# can modify the weights of model in original repo to be
# pre-trained weights.

from collections import OrderedDict

import torch


def pvt_convert(ckpt):
    new_ckpt = OrderedDict()
    # Process the concat between q linear weights and kv linear weights
    use_abs_pos_embed = False
    use_conv_ffn = False
    for k in ckpt.keys():
        if k.startswith('pos_embed'):
            use_abs_pos_embed = True
        if k.find('dwconv') >= 0:
            use_conv_ffn = True
    for k, v in ckpt.items():
        if k.startswith('head'):
            continue
        if k.startswith('norm.'):
            continue
        if k.startswith('cls_token'):
            continue
        if k.startswith('pos_embed'):
            stage_i = int(k.replace('pos_embed', ''))
            new_k = k.replace(f'pos_embed{stage_i}',
                              f'layers.{stage_i - 1}.1.0.pos_embed')
            if stage_i == 4 and v.size(1) == 50:  # 1 (cls token) + 7 * 7
                new_v = v[:, 1:, :]  # remove cls token
            else:
                new_v = v
        elif k.startswith('patch_embed'):
            stage_i = int(k.split('.')[0].replace('patch_embed', ''))
            new_k = k.replace(f'patch_embed{stage_i}',
                              f'layers.{stage_i - 1}.0')
            new_v = v
            if 'proj.' in new_k:
                new_k = new_k.replace('proj.', 'projection.')
        elif k.startswith('block'):
            stage_i = int(k.split('.')[0].replace('block', ''))
            layer_i = int(k.split('.')[1])
            new_layer_i = layer_i + use_abs_pos_embed
            new_k = k.replace(f'block{stage_i}.{layer_i}',
                              f'layers.{stage_i - 1}.1.{new_layer_i}')
            new_v = v
            if 'attn.q.' in new_k:
                sub_item_k = k.replace('q.', 'kv.')
                new_k = new_k.replace('q.', 'attn.in_proj_')
                new_v = torch.cat([v, ckpt[sub_item_k]], dim=0)
            elif 'attn.kv.' in new_k:
                continue
            elif 'attn.proj.' in new_k:
                new_k = new_k.replace('proj.', 'attn.out_proj.')
            elif 'attn.sr.' in new_k:
                new_k = new_k.replace('sr.', 'sr.')
            elif 'mlp.' in new_k:
                string = f'{new_k}-'
                new_k = new_k.replace('mlp.', 'ffn.layers.')
                if 'fc1.weight' in new_k or 'fc2.weight' in new_k:
                    new_v = v.reshape((*v.shape, 1, 1))
                new_k = new_k.replace('fc1.', '0.')
                new_k = new_k.replace('dwconv.dwconv.', '1.')
                if use_conv_ffn:
                    new_k = new_k.replace('fc2.', '4.')
                else:
                    new_k = new_k.replace('fc2.', '3.')
                string += f'{new_k} {v.shape}-{new_v.shape}'
        elif k.startswith('norm'):
            stage_i = int(k[4])
            new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i - 1}.2')
            new_v = v
        else:
            new_k = k
            new_v = v
        new_ckpt[new_k] = new_v

    return new_ckpt


def swin_converter(ckpt):

    new_ckpt = OrderedDict()

    def correct_unfold_reduction_order(x):
        out_channel, in_channel = x.shape
        x = x.reshape(out_channel, 4, in_channel // 4)
        x = x[:, [0, 2, 1, 3], :].transpose(1,
                                            2).reshape(out_channel, in_channel)
        return x

    def correct_unfold_norm_order(x):
        in_channel = x.shape[0]
        x = x.reshape(4, in_channel // 4)
        x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
        return x

    for k, v in ckpt.items():
        if k.startswith('head'):
            continue
        elif k.startswith('layers'):
            new_v = v
            if 'attn.' in k:
                new_k = k.replace('attn.', 'attn.w_msa.')
            elif 'mlp.' in k:
                if 'mlp.fc1.' in k:
                    new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
                elif 'mlp.fc2.' in k:
                    new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
                else:
                    new_k = k.replace('mlp.', 'ffn.')
            elif 'downsample' in k:
                new_k = k
                if 'reduction.' in k:
                    new_v = correct_unfold_reduction_order(v)
                elif 'norm.' in k:
                    new_v = correct_unfold_norm_order(v)
            else:
                new_k = k
            new_k = new_k.replace('layers', 'stages', 1)
        elif k.startswith('patch_embed'):
            new_v = v
            if 'proj' in k:
                new_k = k.replace('proj', 'projection')
            else:
                new_k = k
        else:
            new_v = v
            new_k = k

        new_ckpt['backbone.' + new_k] = new_v

    return new_ckpt