Spaces:
Runtime error
Runtime error
File size: 6,568 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING
from mmcv.runner import BaseModule
@POSITIONAL_ENCODING.register_module()
class SinePositionalEncoding(BaseModule):
"""Position encoding with sine and cosine functions.
See `End-to-End Object Detection with Transformers
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
num_feats (int): The feature dimension for each position
along x-axis or y-axis. Note the final returned dimension
for each position is 2 times of this value.
temperature (int, optional): The temperature used for scaling
the position embedding. Defaults to 10000.
normalize (bool, optional): Whether to normalize the position
embedding. Defaults to False.
scale (float, optional): A scale factor that scales the position
embedding. The scale will be used only when `normalize` is True.
Defaults to 2*pi.
eps (float, optional): A value added to the denominator for
numerical stability. Defaults to 1e-6.
offset (float): offset add to embed when do the normalization.
Defaults to 0.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
num_feats,
temperature=10000,
normalize=False,
scale=2 * math.pi,
eps=1e-6,
offset=0.,
init_cfg=None):
super(SinePositionalEncoding, self).__init__(init_cfg)
if normalize:
assert isinstance(scale, (float, int)), 'when normalize is set,' \
'scale should be provided and in float or int type, ' \
f'found {type(scale)}'
self.num_feats = num_feats
self.temperature = temperature
self.normalize = normalize
self.scale = scale
self.eps = eps
self.offset = offset
def forward(self, mask):
"""Forward function for `SinePositionalEncoding`.
Args:
mask (Tensor): ByteTensor mask. Non-zero values representing
ignored positions, while zero values means valid positions
for this image. Shape [bs, h, w].
Returns:
pos (Tensor): Returned position embedding with shape
[bs, num_feats*2, h, w].
"""
# For convenience of exporting to ONNX, it's required to convert
# `masks` from bool to int.
mask = mask.to(torch.int)
not_mask = 1 - mask # logical_not
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = (y_embed + self.offset) / \
(y_embed[:, -1:, :] + self.eps) * self.scale
x_embed = (x_embed + self.offset) / \
(x_embed[:, :, -1:] + self.eps) * self.scale
dim_t = torch.arange(
self.num_feats, dtype=torch.float32, device=mask.device)
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
# use `view` instead of `flatten` for dynamically exporting to ONNX
B, H, W = mask.size()
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).view(B, H, W, -1)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).view(B, H, W, -1)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(num_feats={self.num_feats}, '
repr_str += f'temperature={self.temperature}, '
repr_str += f'normalize={self.normalize}, '
repr_str += f'scale={self.scale}, '
repr_str += f'eps={self.eps})'
return repr_str
@POSITIONAL_ENCODING.register_module()
class LearnedPositionalEncoding(BaseModule):
"""Position embedding with learnable embedding weights.
Args:
num_feats (int): The feature dimension for each position
along x-axis or y-axis. The final returned dimension for
each position is 2 times of this value.
row_num_embed (int, optional): The dictionary size of row embeddings.
Default 50.
col_num_embed (int, optional): The dictionary size of col embeddings.
Default 50.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
num_feats,
row_num_embed=50,
col_num_embed=50,
init_cfg=dict(type='Uniform', layer='Embedding')):
super(LearnedPositionalEncoding, self).__init__(init_cfg)
self.row_embed = nn.Embedding(row_num_embed, num_feats)
self.col_embed = nn.Embedding(col_num_embed, num_feats)
self.num_feats = num_feats
self.row_num_embed = row_num_embed
self.col_num_embed = col_num_embed
def forward(self, mask):
"""Forward function for `LearnedPositionalEncoding`.
Args:
mask (Tensor): ByteTensor mask. Non-zero values representing
ignored positions, while zero values means valid positions
for this image. Shape [bs, h, w].
Returns:
pos (Tensor): Returned position embedding with shape
[bs, num_feats*2, h, w].
"""
h, w = mask.shape[-2:]
x = torch.arange(w, device=mask.device)
y = torch.arange(h, device=mask.device)
x_embed = self.col_embed(x)
y_embed = self.row_embed(y)
pos = torch.cat(
(x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat(
1, w, 1)),
dim=-1).permute(2, 0,
1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1)
return pos
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(num_feats={self.num_feats}, '
repr_str += f'row_num_embed={self.row_num_embed}, '
repr_str += f'col_num_embed={self.col_num_embed})'
return repr_str
|