Spaces:
Runtime error
Runtime error
File size: 23,938 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# Copyright (c) OpenMMLab. All rights reserved.
import importlib
import os.path as osp
import sys
import warnings
import mmcv
import numpy as np
import pycocotools.mask as mask_util
from mmcv.runner import HOOKS
from mmcv.runner.dist_utils import master_only
from mmcv.runner.hooks.checkpoint import CheckpointHook
from mmcv.runner.hooks.logger.wandb import WandbLoggerHook
from mmcv.utils import digit_version
from mmdet.core import DistEvalHook, EvalHook
from mmdet.core.mask.structures import polygon_to_bitmap
@HOOKS.register_module()
class MMDetWandbHook(WandbLoggerHook):
"""Enhanced Wandb logger hook for MMDetection.
Comparing with the :cls:`mmcv.runner.WandbLoggerHook`, this hook can not
only automatically log all the metrics but also log the following extra
information - saves model checkpoints as W&B Artifact, and
logs model prediction as interactive W&B Tables.
- Metrics: The MMDetWandbHook will automatically log training
and validation metrics along with system metrics (CPU/GPU).
- Checkpointing: If `log_checkpoint` is True, the checkpoint saved at
every checkpoint interval will be saved as W&B Artifacts.
This depends on the : class:`mmcv.runner.CheckpointHook` whose priority
is higher than this hook. Please refer to
https://docs.wandb.ai/guides/artifacts/model-versioning
to learn more about model versioning with W&B Artifacts.
- Checkpoint Metadata: If evaluation results are available for a given
checkpoint artifact, it will have a metadata associated with it.
The metadata contains the evaluation metrics computed on validation
data with that checkpoint along with the current epoch. It depends
on `EvalHook` whose priority is more than MMDetWandbHook.
- Evaluation: At every evaluation interval, the `MMDetWandbHook` logs the
model prediction as interactive W&B Tables. The number of samples
logged is given by `num_eval_images`. Currently, the `MMDetWandbHook`
logs the predicted bounding boxes along with the ground truth at every
evaluation interval. This depends on the `EvalHook` whose priority is
more than `MMDetWandbHook`. Also note that the data is just logged once
and subsequent evaluation tables uses reference to the logged data
to save memory usage. Please refer to
https://docs.wandb.ai/guides/data-vis to learn more about W&B Tables.
For more details check out W&B's MMDetection docs:
https://docs.wandb.ai/guides/integrations/mmdetection
```
Example:
log_config = dict(
...
hooks=[
...,
dict(type='MMDetWandbHook',
init_kwargs={
'entity': "YOUR_ENTITY",
'project': "YOUR_PROJECT_NAME"
},
interval=50,
log_checkpoint=True,
log_checkpoint_metadata=True,
num_eval_images=100,
bbox_score_thr=0.3)
])
```
Args:
init_kwargs (dict): A dict passed to wandb.init to initialize
a W&B run. Please refer to https://docs.wandb.ai/ref/python/init
for possible key-value pairs.
interval (int): Logging interval (every k iterations). Defaults to 50.
log_checkpoint (bool): Save the checkpoint at every checkpoint interval
as W&B Artifacts. Use this for model versioning where each version
is a checkpoint. Defaults to False.
log_checkpoint_metadata (bool): Log the evaluation metrics computed
on the validation data with the checkpoint, along with current
epoch as a metadata to that checkpoint.
Defaults to True.
num_eval_images (int): The number of validation images to be logged.
If zero, the evaluation won't be logged. Defaults to 100.
bbox_score_thr (float): Threshold for bounding box scores.
Defaults to 0.3.
"""
def __init__(self,
init_kwargs=None,
interval=50,
log_checkpoint=False,
log_checkpoint_metadata=False,
num_eval_images=100,
bbox_score_thr=0.3,
**kwargs):
super(MMDetWandbHook, self).__init__(init_kwargs, interval, **kwargs)
self.log_checkpoint = log_checkpoint
self.log_checkpoint_metadata = (
log_checkpoint and log_checkpoint_metadata)
self.num_eval_images = num_eval_images
self.bbox_score_thr = bbox_score_thr
self.log_evaluation = (num_eval_images > 0)
self.ckpt_hook: CheckpointHook = None
self.eval_hook: EvalHook = None
def import_wandb(self):
try:
import wandb
from wandb import init # noqa
# Fix ResourceWarning when calling wandb.log in wandb v0.12.10.
# https://github.com/wandb/client/issues/2837
if digit_version(wandb.__version__) < digit_version('0.12.10'):
warnings.warn(
f'The current wandb {wandb.__version__} is '
f'lower than v0.12.10 will cause ResourceWarning '
f'when calling wandb.log, Please run '
f'"pip install --upgrade wandb"')
except ImportError:
raise ImportError(
'Please run "pip install "wandb>=0.12.10"" to install wandb')
self.wandb = wandb
@master_only
def before_run(self, runner):
super(MMDetWandbHook, self).before_run(runner)
# Save and Log config.
if runner.meta is not None and runner.meta.get('exp_name',
None) is not None:
src_cfg_path = osp.join(runner.work_dir,
runner.meta.get('exp_name', None))
if osp.exists(src_cfg_path):
self.wandb.save(src_cfg_path, base_path=runner.work_dir)
self._update_wandb_config(runner)
else:
runner.logger.warning('No meta information found in the runner. ')
# Inspect CheckpointHook and EvalHook
for hook in runner.hooks:
if isinstance(hook, CheckpointHook):
self.ckpt_hook = hook
if isinstance(hook, (EvalHook, DistEvalHook)):
self.eval_hook = hook
# Check conditions to log checkpoint
if self.log_checkpoint:
if self.ckpt_hook is None:
self.log_checkpoint = False
self.log_checkpoint_metadata = False
runner.logger.warning(
'To log checkpoint in MMDetWandbHook, `CheckpointHook` is'
'required, please check hooks in the runner.')
else:
self.ckpt_interval = self.ckpt_hook.interval
# Check conditions to log evaluation
if self.log_evaluation or self.log_checkpoint_metadata:
if self.eval_hook is None:
self.log_evaluation = False
self.log_checkpoint_metadata = False
runner.logger.warning(
'To log evaluation or checkpoint metadata in '
'MMDetWandbHook, `EvalHook` or `DistEvalHook` in mmdet '
'is required, please check whether the validation '
'is enabled.')
else:
self.eval_interval = self.eval_hook.interval
self.val_dataset = self.eval_hook.dataloader.dataset
# Determine the number of samples to be logged.
if self.num_eval_images > len(self.val_dataset):
self.num_eval_images = len(self.val_dataset)
runner.logger.warning(
f'The num_eval_images ({self.num_eval_images}) is '
'greater than the total number of validation samples '
f'({len(self.val_dataset)}). The complete validation '
'dataset will be logged.')
# Check conditions to log checkpoint metadata
if self.log_checkpoint_metadata:
assert self.ckpt_interval % self.eval_interval == 0, \
'To log checkpoint metadata in MMDetWandbHook, the interval ' \
f'of checkpoint saving ({self.ckpt_interval}) should be ' \
'divisible by the interval of evaluation ' \
f'({self.eval_interval}).'
# Initialize evaluation table
if self.log_evaluation:
# Initialize data table
self._init_data_table()
# Add data to the data table
self._add_ground_truth(runner)
# Log ground truth data
self._log_data_table()
@master_only
def after_train_epoch(self, runner):
super(MMDetWandbHook, self).after_train_epoch(runner)
if not self.by_epoch:
return
# Log checkpoint and metadata.
if (self.log_checkpoint
and self.every_n_epochs(runner, self.ckpt_interval)
or (self.ckpt_hook.save_last and self.is_last_epoch(runner))):
if self.log_checkpoint_metadata and self.eval_hook:
metadata = {
'epoch': runner.epoch + 1,
**self._get_eval_results()
}
else:
metadata = None
aliases = [f'epoch_{runner.epoch + 1}', 'latest']
model_path = osp.join(self.ckpt_hook.out_dir,
f'epoch_{runner.epoch + 1}.pth')
self._log_ckpt_as_artifact(model_path, aliases, metadata)
# Save prediction table
if self.log_evaluation and self.eval_hook._should_evaluate(runner):
results = self.eval_hook.latest_results
# Initialize evaluation table
self._init_pred_table()
# Log predictions
self._log_predictions(results)
# Log the table
self._log_eval_table(runner.epoch + 1)
# for the reason of this double-layered structure, refer to
# https://github.com/open-mmlab/mmdetection/issues/8145#issuecomment-1345343076
def after_train_iter(self, runner):
if self.get_mode(runner) == 'train':
# An ugly patch. The iter-based eval hook will call the
# `after_train_iter` method of all logger hooks before evaluation.
# Use this trick to skip that call.
# Don't call super method at first, it will clear the log_buffer
return super(MMDetWandbHook, self).after_train_iter(runner)
else:
super(MMDetWandbHook, self).after_train_iter(runner)
self._after_train_iter(runner)
@master_only
def _after_train_iter(self, runner):
if self.by_epoch:
return
# Save checkpoint and metadata
if (self.log_checkpoint
and self.every_n_iters(runner, self.ckpt_interval)
or (self.ckpt_hook.save_last and self.is_last_iter(runner))):
if self.log_checkpoint_metadata and self.eval_hook:
metadata = {
'iter': runner.iter + 1,
**self._get_eval_results()
}
else:
metadata = None
aliases = [f'iter_{runner.iter + 1}', 'latest']
model_path = osp.join(self.ckpt_hook.out_dir,
f'iter_{runner.iter + 1}.pth')
self._log_ckpt_as_artifact(model_path, aliases, metadata)
# Save prediction table
if self.log_evaluation and self.eval_hook._should_evaluate(runner):
results = self.eval_hook.latest_results
# Initialize evaluation table
self._init_pred_table()
# Log predictions
self._log_predictions(results)
# Log the table
self._log_eval_table(runner.iter + 1)
@master_only
def after_run(self, runner):
self.wandb.finish()
def _update_wandb_config(self, runner):
"""Update wandb config."""
# Import the config file.
sys.path.append(runner.work_dir)
config_filename = runner.meta['exp_name'][:-3]
configs = importlib.import_module(config_filename)
# Prepare a nested dict of config variables.
config_keys = [key for key in dir(configs) if not key.startswith('__')]
config_dict = {key: getattr(configs, key) for key in config_keys}
# Update the W&B config.
self.wandb.config.update(config_dict)
def _log_ckpt_as_artifact(self, model_path, aliases, metadata=None):
"""Log model checkpoint as W&B Artifact.
Args:
model_path (str): Path of the checkpoint to log.
aliases (list): List of the aliases associated with this artifact.
metadata (dict, optional): Metadata associated with this artifact.
"""
model_artifact = self.wandb.Artifact(
f'run_{self.wandb.run.id}_model', type='model', metadata=metadata)
model_artifact.add_file(model_path)
self.wandb.log_artifact(model_artifact, aliases=aliases)
def _get_eval_results(self):
"""Get model evaluation results."""
results = self.eval_hook.latest_results
eval_results = self.val_dataset.evaluate(
results, logger='silent', **self.eval_hook.eval_kwargs)
return eval_results
def _init_data_table(self):
"""Initialize the W&B Tables for validation data."""
columns = ['image_name', 'image']
self.data_table = self.wandb.Table(columns=columns)
def _init_pred_table(self):
"""Initialize the W&B Tables for model evaluation."""
columns = ['image_name', 'ground_truth', 'prediction']
self.eval_table = self.wandb.Table(columns=columns)
def _add_ground_truth(self, runner):
# Get image loading pipeline
from mmdet.datasets.pipelines import LoadImageFromFile
img_loader = None
for t in self.val_dataset.pipeline.transforms:
if isinstance(t, LoadImageFromFile):
img_loader = t
if img_loader is None:
self.log_evaluation = False
runner.logger.warning(
'LoadImageFromFile is required to add images '
'to W&B Tables.')
return
# Select the images to be logged.
self.eval_image_indexs = np.arange(len(self.val_dataset))
# Set seed so that same validation set is logged each time.
np.random.seed(42)
np.random.shuffle(self.eval_image_indexs)
self.eval_image_indexs = self.eval_image_indexs[:self.num_eval_images]
CLASSES = self.val_dataset.CLASSES
self.class_id_to_label = {
id + 1: name
for id, name in enumerate(CLASSES)
}
self.class_set = self.wandb.Classes([{
'id': id,
'name': name
} for id, name in self.class_id_to_label.items()])
img_prefix = self.val_dataset.img_prefix
for idx in self.eval_image_indexs:
img_info = self.val_dataset.data_infos[idx]
image_name = img_info.get('filename', f'img_{idx}')
img_height, img_width = img_info['height'], img_info['width']
img_meta = img_loader(
dict(img_info=img_info, img_prefix=img_prefix))
# Get image and convert from BGR to RGB
image = mmcv.bgr2rgb(img_meta['img'])
data_ann = self.val_dataset.get_ann_info(idx)
bboxes = data_ann['bboxes']
labels = data_ann['labels']
masks = data_ann.get('masks', None)
# Get dict of bounding boxes to be logged.
assert len(bboxes) == len(labels)
wandb_boxes = self._get_wandb_bboxes(bboxes, labels)
# Get dict of masks to be logged.
if masks is not None:
wandb_masks = self._get_wandb_masks(
masks,
labels,
is_poly_mask=True,
height=img_height,
width=img_width)
else:
wandb_masks = None
# TODO: Panoramic segmentation visualization.
# Log a row to the data table.
self.data_table.add_data(
image_name,
self.wandb.Image(
image,
boxes=wandb_boxes,
masks=wandb_masks,
classes=self.class_set))
def _log_predictions(self, results):
table_idxs = self.data_table_ref.get_index()
assert len(table_idxs) == len(self.eval_image_indexs)
for ndx, eval_image_index in enumerate(self.eval_image_indexs):
# Get the result
result = results[eval_image_index]
if isinstance(result, tuple):
bbox_result, segm_result = result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = result, None
assert len(bbox_result) == len(self.class_id_to_label)
# Get labels
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
# Get segmentation mask if available.
segms = None
if segm_result is not None and len(labels) > 0:
segms = mmcv.concat_list(segm_result)
segms = mask_util.decode(segms)
segms = segms.transpose(2, 0, 1)
assert len(segms) == len(labels)
# TODO: Panoramic segmentation visualization.
# Remove bounding boxes and masks with score lower than threshold.
if self.bbox_score_thr > 0:
assert bboxes is not None and bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > self.bbox_score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
if segms is not None:
segms = segms[inds, ...]
# Get dict of bounding boxes to be logged.
wandb_boxes = self._get_wandb_bboxes(bboxes, labels, log_gt=False)
# Get dict of masks to be logged.
if segms is not None:
wandb_masks = self._get_wandb_masks(segms, labels)
else:
wandb_masks = None
# Log a row to the eval table.
self.eval_table.add_data(
self.data_table_ref.data[ndx][0],
self.data_table_ref.data[ndx][1],
self.wandb.Image(
self.data_table_ref.data[ndx][1],
boxes=wandb_boxes,
masks=wandb_masks,
classes=self.class_set))
def _get_wandb_bboxes(self, bboxes, labels, log_gt=True):
"""Get list of structured dict for logging bounding boxes to W&B.
Args:
bboxes (list): List of bounding box coordinates in
(minX, minY, maxX, maxY) format.
labels (int): List of label ids.
log_gt (bool): Whether to log ground truth or prediction boxes.
Returns:
Dictionary of bounding boxes to be logged.
"""
wandb_boxes = {}
box_data = []
for bbox, label in zip(bboxes, labels):
if not isinstance(label, int):
label = int(label)
label = label + 1
if len(bbox) == 5:
confidence = float(bbox[4])
class_name = self.class_id_to_label[label]
box_caption = f'{class_name} {confidence:.2f}'
else:
box_caption = str(self.class_id_to_label[label])
position = dict(
minX=int(bbox[0]),
minY=int(bbox[1]),
maxX=int(bbox[2]),
maxY=int(bbox[3]))
box_data.append({
'position': position,
'class_id': label,
'box_caption': box_caption,
'domain': 'pixel'
})
wandb_bbox_dict = {
'box_data': box_data,
'class_labels': self.class_id_to_label
}
if log_gt:
wandb_boxes['ground_truth'] = wandb_bbox_dict
else:
wandb_boxes['predictions'] = wandb_bbox_dict
return wandb_boxes
def _get_wandb_masks(self,
masks,
labels,
is_poly_mask=False,
height=None,
width=None):
"""Get list of structured dict for logging masks to W&B.
Args:
masks (list): List of masks.
labels (int): List of label ids.
is_poly_mask (bool): Whether the mask is polygonal or not.
This is true for CocoDataset.
height (int): Height of the image.
width (int): Width of the image.
Returns:
Dictionary of masks to be logged.
"""
mask_label_dict = dict()
for mask, label in zip(masks, labels):
label = label + 1
# Get bitmap mask from polygon.
if is_poly_mask:
if height is not None and width is not None:
mask = polygon_to_bitmap(mask, height, width)
# Create composite masks for each class.
if label not in mask_label_dict.keys():
mask_label_dict[label] = mask
else:
mask_label_dict[label] = np.logical_or(mask_label_dict[label],
mask)
wandb_masks = dict()
for key, value in mask_label_dict.items():
# Create mask for that class.
value = value.astype(np.uint8)
value[value > 0] = key
# Create dict of masks for logging.
class_name = self.class_id_to_label[key]
wandb_masks[class_name] = {
'mask_data': value,
'class_labels': self.class_id_to_label
}
return wandb_masks
def _log_data_table(self):
"""Log the W&B Tables for validation data as artifact and calls
`use_artifact` on it so that the evaluation table can use the reference
of already uploaded images.
This allows the data to be uploaded just once.
"""
data_artifact = self.wandb.Artifact('val', type='dataset')
data_artifact.add(self.data_table, 'val_data')
if not self.wandb.run.offline:
self.wandb.run.use_artifact(data_artifact)
data_artifact.wait()
self.data_table_ref = data_artifact.get('val_data')
else:
self.data_table_ref = self.data_table
def _log_eval_table(self, idx):
"""Log the W&B Tables for model evaluation.
The table will be logged multiple times creating new version. Use this
to compare models at different intervals interactively.
"""
pred_artifact = self.wandb.Artifact(
f'run_{self.wandb.run.id}_pred', type='evaluation')
pred_artifact.add(self.eval_table, 'eval_data')
if self.by_epoch:
aliases = ['latest', f'epoch_{idx}']
else:
aliases = ['latest', f'iter_{idx}']
self.wandb.run.log_artifact(pred_artifact, aliases=aliases)
|