File size: 23,938 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# Copyright (c) OpenMMLab. All rights reserved.
import importlib
import os.path as osp
import sys
import warnings

import mmcv
import numpy as np
import pycocotools.mask as mask_util
from mmcv.runner import HOOKS
from mmcv.runner.dist_utils import master_only
from mmcv.runner.hooks.checkpoint import CheckpointHook
from mmcv.runner.hooks.logger.wandb import WandbLoggerHook
from mmcv.utils import digit_version

from mmdet.core import DistEvalHook, EvalHook
from mmdet.core.mask.structures import polygon_to_bitmap


@HOOKS.register_module()
class MMDetWandbHook(WandbLoggerHook):
    """Enhanced Wandb logger hook for MMDetection.

    Comparing with the :cls:`mmcv.runner.WandbLoggerHook`, this hook can not
    only automatically log all the metrics but also log the following extra
    information - saves model checkpoints as W&B Artifact, and
    logs model prediction as interactive W&B Tables.

    - Metrics: The MMDetWandbHook will automatically log training
        and validation metrics along with system metrics (CPU/GPU).

    - Checkpointing: If `log_checkpoint` is True, the checkpoint saved at
        every checkpoint interval will be saved as W&B Artifacts.
        This depends on the : class:`mmcv.runner.CheckpointHook` whose priority
        is higher than this hook. Please refer to
        https://docs.wandb.ai/guides/artifacts/model-versioning
        to learn more about model versioning with W&B Artifacts.

    - Checkpoint Metadata: If evaluation results are available for a given
        checkpoint artifact, it will have a metadata associated with it.
        The metadata contains the evaluation metrics computed on validation
        data with that checkpoint along with the current epoch. It depends
        on `EvalHook` whose priority is more than MMDetWandbHook.

    - Evaluation: At every evaluation interval, the `MMDetWandbHook` logs the
        model prediction as interactive W&B Tables. The number of samples
        logged is given by `num_eval_images`. Currently, the `MMDetWandbHook`
        logs the predicted bounding boxes along with the ground truth at every
        evaluation interval. This depends on the `EvalHook` whose priority is
        more than `MMDetWandbHook`. Also note that the data is just logged once
        and subsequent evaluation tables uses reference to the logged data
        to save memory usage. Please refer to
        https://docs.wandb.ai/guides/data-vis to learn more about W&B Tables.

    For more details check out W&B's MMDetection docs:
    https://docs.wandb.ai/guides/integrations/mmdetection

    ```
    Example:
        log_config = dict(
            ...
            hooks=[
                ...,
                dict(type='MMDetWandbHook',
                     init_kwargs={
                         'entity': "YOUR_ENTITY",
                         'project': "YOUR_PROJECT_NAME"
                     },
                     interval=50,
                     log_checkpoint=True,
                     log_checkpoint_metadata=True,
                     num_eval_images=100,
                     bbox_score_thr=0.3)
            ])
    ```

    Args:
        init_kwargs (dict): A dict passed to wandb.init to initialize
            a W&B run. Please refer to https://docs.wandb.ai/ref/python/init
            for possible key-value pairs.
        interval (int): Logging interval (every k iterations). Defaults to 50.
        log_checkpoint (bool): Save the checkpoint at every checkpoint interval
            as W&B Artifacts. Use this for model versioning where each version
            is a checkpoint. Defaults to False.
        log_checkpoint_metadata (bool): Log the evaluation metrics computed
            on the validation data with the checkpoint, along with current
            epoch as a metadata to that checkpoint.
            Defaults to True.
        num_eval_images (int): The number of validation images to be logged.
            If zero, the evaluation won't be logged. Defaults to 100.
        bbox_score_thr (float): Threshold for bounding box scores.
            Defaults to 0.3.
    """

    def __init__(self,
                 init_kwargs=None,
                 interval=50,
                 log_checkpoint=False,
                 log_checkpoint_metadata=False,
                 num_eval_images=100,
                 bbox_score_thr=0.3,
                 **kwargs):
        super(MMDetWandbHook, self).__init__(init_kwargs, interval, **kwargs)

        self.log_checkpoint = log_checkpoint
        self.log_checkpoint_metadata = (
            log_checkpoint and log_checkpoint_metadata)
        self.num_eval_images = num_eval_images
        self.bbox_score_thr = bbox_score_thr
        self.log_evaluation = (num_eval_images > 0)
        self.ckpt_hook: CheckpointHook = None
        self.eval_hook: EvalHook = None

    def import_wandb(self):
        try:
            import wandb
            from wandb import init  # noqa

            # Fix ResourceWarning when calling wandb.log in wandb v0.12.10.
            # https://github.com/wandb/client/issues/2837
            if digit_version(wandb.__version__) < digit_version('0.12.10'):
                warnings.warn(
                    f'The current wandb {wandb.__version__} is '
                    f'lower than v0.12.10 will cause ResourceWarning '
                    f'when calling wandb.log, Please run '
                    f'"pip install --upgrade wandb"')

        except ImportError:
            raise ImportError(
                'Please run "pip install "wandb>=0.12.10"" to install wandb')
        self.wandb = wandb

    @master_only
    def before_run(self, runner):
        super(MMDetWandbHook, self).before_run(runner)

        # Save and Log config.
        if runner.meta is not None and runner.meta.get('exp_name',
                                                       None) is not None:
            src_cfg_path = osp.join(runner.work_dir,
                                    runner.meta.get('exp_name', None))
            if osp.exists(src_cfg_path):
                self.wandb.save(src_cfg_path, base_path=runner.work_dir)
                self._update_wandb_config(runner)
        else:
            runner.logger.warning('No meta information found in the runner. ')

        # Inspect CheckpointHook and EvalHook
        for hook in runner.hooks:
            if isinstance(hook, CheckpointHook):
                self.ckpt_hook = hook
            if isinstance(hook, (EvalHook, DistEvalHook)):
                self.eval_hook = hook

        # Check conditions to log checkpoint
        if self.log_checkpoint:
            if self.ckpt_hook is None:
                self.log_checkpoint = False
                self.log_checkpoint_metadata = False
                runner.logger.warning(
                    'To log checkpoint in MMDetWandbHook, `CheckpointHook` is'
                    'required, please check hooks in the runner.')
            else:
                self.ckpt_interval = self.ckpt_hook.interval

        # Check conditions to log evaluation
        if self.log_evaluation or self.log_checkpoint_metadata:
            if self.eval_hook is None:
                self.log_evaluation = False
                self.log_checkpoint_metadata = False
                runner.logger.warning(
                    'To log evaluation or checkpoint metadata in '
                    'MMDetWandbHook, `EvalHook` or `DistEvalHook` in mmdet '
                    'is required, please check whether the validation '
                    'is enabled.')
            else:
                self.eval_interval = self.eval_hook.interval
                self.val_dataset = self.eval_hook.dataloader.dataset
                # Determine the number of samples to be logged.
                if self.num_eval_images > len(self.val_dataset):
                    self.num_eval_images = len(self.val_dataset)
                    runner.logger.warning(
                        f'The num_eval_images ({self.num_eval_images}) is '
                        'greater than the total number of validation samples '
                        f'({len(self.val_dataset)}). The complete validation '
                        'dataset will be logged.')

        # Check conditions to log checkpoint metadata
        if self.log_checkpoint_metadata:
            assert self.ckpt_interval % self.eval_interval == 0, \
                'To log checkpoint metadata in MMDetWandbHook, the interval ' \
                f'of checkpoint saving ({self.ckpt_interval}) should be ' \
                'divisible by the interval of evaluation ' \
                f'({self.eval_interval}).'

        # Initialize evaluation table
        if self.log_evaluation:
            # Initialize data table
            self._init_data_table()
            # Add data to the data table
            self._add_ground_truth(runner)
            # Log ground truth data
            self._log_data_table()

    @master_only
    def after_train_epoch(self, runner):
        super(MMDetWandbHook, self).after_train_epoch(runner)

        if not self.by_epoch:
            return

        # Log checkpoint and metadata.
        if (self.log_checkpoint
                and self.every_n_epochs(runner, self.ckpt_interval)
                or (self.ckpt_hook.save_last and self.is_last_epoch(runner))):
            if self.log_checkpoint_metadata and self.eval_hook:
                metadata = {
                    'epoch': runner.epoch + 1,
                    **self._get_eval_results()
                }
            else:
                metadata = None
            aliases = [f'epoch_{runner.epoch + 1}', 'latest']
            model_path = osp.join(self.ckpt_hook.out_dir,
                                  f'epoch_{runner.epoch + 1}.pth')
            self._log_ckpt_as_artifact(model_path, aliases, metadata)

        # Save prediction table
        if self.log_evaluation and self.eval_hook._should_evaluate(runner):
            results = self.eval_hook.latest_results
            # Initialize evaluation table
            self._init_pred_table()
            # Log predictions
            self._log_predictions(results)
            # Log the table
            self._log_eval_table(runner.epoch + 1)

    # for the reason of this double-layered structure, refer to
    # https://github.com/open-mmlab/mmdetection/issues/8145#issuecomment-1345343076
    def after_train_iter(self, runner):
        if self.get_mode(runner) == 'train':
            # An ugly patch. The iter-based eval hook will call the
            # `after_train_iter` method of all logger hooks before evaluation.
            # Use this trick to skip that call.
            # Don't call super method at first, it will clear the log_buffer
            return super(MMDetWandbHook, self).after_train_iter(runner)
        else:
            super(MMDetWandbHook, self).after_train_iter(runner)
        self._after_train_iter(runner)

    @master_only
    def _after_train_iter(self, runner):
        if self.by_epoch:
            return

        # Save checkpoint and metadata
        if (self.log_checkpoint
                and self.every_n_iters(runner, self.ckpt_interval)
                or (self.ckpt_hook.save_last and self.is_last_iter(runner))):
            if self.log_checkpoint_metadata and self.eval_hook:
                metadata = {
                    'iter': runner.iter + 1,
                    **self._get_eval_results()
                }
            else:
                metadata = None
            aliases = [f'iter_{runner.iter + 1}', 'latest']
            model_path = osp.join(self.ckpt_hook.out_dir,
                                  f'iter_{runner.iter + 1}.pth')
            self._log_ckpt_as_artifact(model_path, aliases, metadata)

        # Save prediction table
        if self.log_evaluation and self.eval_hook._should_evaluate(runner):
            results = self.eval_hook.latest_results
            # Initialize evaluation table
            self._init_pred_table()
            # Log predictions
            self._log_predictions(results)
            # Log the table
            self._log_eval_table(runner.iter + 1)

    @master_only
    def after_run(self, runner):
        self.wandb.finish()

    def _update_wandb_config(self, runner):
        """Update wandb config."""
        # Import the config file.
        sys.path.append(runner.work_dir)
        config_filename = runner.meta['exp_name'][:-3]
        configs = importlib.import_module(config_filename)
        # Prepare a nested dict of config variables.
        config_keys = [key for key in dir(configs) if not key.startswith('__')]
        config_dict = {key: getattr(configs, key) for key in config_keys}
        # Update the W&B config.
        self.wandb.config.update(config_dict)

    def _log_ckpt_as_artifact(self, model_path, aliases, metadata=None):
        """Log model checkpoint as  W&B Artifact.

        Args:
            model_path (str): Path of the checkpoint to log.
            aliases (list): List of the aliases associated with this artifact.
            metadata (dict, optional): Metadata associated with this artifact.
        """
        model_artifact = self.wandb.Artifact(
            f'run_{self.wandb.run.id}_model', type='model', metadata=metadata)
        model_artifact.add_file(model_path)
        self.wandb.log_artifact(model_artifact, aliases=aliases)

    def _get_eval_results(self):
        """Get model evaluation results."""
        results = self.eval_hook.latest_results
        eval_results = self.val_dataset.evaluate(
            results, logger='silent', **self.eval_hook.eval_kwargs)
        return eval_results

    def _init_data_table(self):
        """Initialize the W&B Tables for validation data."""
        columns = ['image_name', 'image']
        self.data_table = self.wandb.Table(columns=columns)

    def _init_pred_table(self):
        """Initialize the W&B Tables for model evaluation."""
        columns = ['image_name', 'ground_truth', 'prediction']
        self.eval_table = self.wandb.Table(columns=columns)

    def _add_ground_truth(self, runner):
        # Get image loading pipeline
        from mmdet.datasets.pipelines import LoadImageFromFile
        img_loader = None
        for t in self.val_dataset.pipeline.transforms:
            if isinstance(t, LoadImageFromFile):
                img_loader = t

        if img_loader is None:
            self.log_evaluation = False
            runner.logger.warning(
                'LoadImageFromFile is required to add images '
                'to W&B Tables.')
            return

        # Select the images to be logged.
        self.eval_image_indexs = np.arange(len(self.val_dataset))
        # Set seed so that same validation set is logged each time.
        np.random.seed(42)
        np.random.shuffle(self.eval_image_indexs)
        self.eval_image_indexs = self.eval_image_indexs[:self.num_eval_images]

        CLASSES = self.val_dataset.CLASSES
        self.class_id_to_label = {
            id + 1: name
            for id, name in enumerate(CLASSES)
        }
        self.class_set = self.wandb.Classes([{
            'id': id,
            'name': name
        } for id, name in self.class_id_to_label.items()])

        img_prefix = self.val_dataset.img_prefix

        for idx in self.eval_image_indexs:
            img_info = self.val_dataset.data_infos[idx]
            image_name = img_info.get('filename', f'img_{idx}')
            img_height, img_width = img_info['height'], img_info['width']

            img_meta = img_loader(
                dict(img_info=img_info, img_prefix=img_prefix))

            # Get image and convert from BGR to RGB
            image = mmcv.bgr2rgb(img_meta['img'])

            data_ann = self.val_dataset.get_ann_info(idx)
            bboxes = data_ann['bboxes']
            labels = data_ann['labels']
            masks = data_ann.get('masks', None)

            # Get dict of bounding boxes to be logged.
            assert len(bboxes) == len(labels)
            wandb_boxes = self._get_wandb_bboxes(bboxes, labels)

            # Get dict of masks to be logged.
            if masks is not None:
                wandb_masks = self._get_wandb_masks(
                    masks,
                    labels,
                    is_poly_mask=True,
                    height=img_height,
                    width=img_width)
            else:
                wandb_masks = None
            # TODO: Panoramic segmentation visualization.

            # Log a row to the data table.
            self.data_table.add_data(
                image_name,
                self.wandb.Image(
                    image,
                    boxes=wandb_boxes,
                    masks=wandb_masks,
                    classes=self.class_set))

    def _log_predictions(self, results):
        table_idxs = self.data_table_ref.get_index()
        assert len(table_idxs) == len(self.eval_image_indexs)

        for ndx, eval_image_index in enumerate(self.eval_image_indexs):
            # Get the result
            result = results[eval_image_index]
            if isinstance(result, tuple):
                bbox_result, segm_result = result
                if isinstance(segm_result, tuple):
                    segm_result = segm_result[0]  # ms rcnn
            else:
                bbox_result, segm_result = result, None
            assert len(bbox_result) == len(self.class_id_to_label)

            # Get labels
            bboxes = np.vstack(bbox_result)
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)

            # Get segmentation mask if available.
            segms = None
            if segm_result is not None and len(labels) > 0:
                segms = mmcv.concat_list(segm_result)
                segms = mask_util.decode(segms)
                segms = segms.transpose(2, 0, 1)
                assert len(segms) == len(labels)
            # TODO: Panoramic segmentation visualization.

            # Remove bounding boxes and masks with score lower than threshold.
            if self.bbox_score_thr > 0:
                assert bboxes is not None and bboxes.shape[1] == 5
                scores = bboxes[:, -1]
                inds = scores > self.bbox_score_thr
                bboxes = bboxes[inds, :]
                labels = labels[inds]
                if segms is not None:
                    segms = segms[inds, ...]

            # Get dict of bounding boxes to be logged.
            wandb_boxes = self._get_wandb_bboxes(bboxes, labels, log_gt=False)
            # Get dict of masks to be logged.
            if segms is not None:
                wandb_masks = self._get_wandb_masks(segms, labels)
            else:
                wandb_masks = None

            # Log a row to the eval table.
            self.eval_table.add_data(
                self.data_table_ref.data[ndx][0],
                self.data_table_ref.data[ndx][1],
                self.wandb.Image(
                    self.data_table_ref.data[ndx][1],
                    boxes=wandb_boxes,
                    masks=wandb_masks,
                    classes=self.class_set))

    def _get_wandb_bboxes(self, bboxes, labels, log_gt=True):
        """Get list of structured dict for logging bounding boxes to W&B.

        Args:
            bboxes (list): List of bounding box coordinates in
                        (minX, minY, maxX, maxY) format.
            labels (int): List of label ids.
            log_gt (bool): Whether to log ground truth or prediction boxes.

        Returns:
            Dictionary of bounding boxes to be logged.
        """
        wandb_boxes = {}

        box_data = []
        for bbox, label in zip(bboxes, labels):
            if not isinstance(label, int):
                label = int(label)
            label = label + 1

            if len(bbox) == 5:
                confidence = float(bbox[4])
                class_name = self.class_id_to_label[label]
                box_caption = f'{class_name} {confidence:.2f}'
            else:
                box_caption = str(self.class_id_to_label[label])

            position = dict(
                minX=int(bbox[0]),
                minY=int(bbox[1]),
                maxX=int(bbox[2]),
                maxY=int(bbox[3]))

            box_data.append({
                'position': position,
                'class_id': label,
                'box_caption': box_caption,
                'domain': 'pixel'
            })

        wandb_bbox_dict = {
            'box_data': box_data,
            'class_labels': self.class_id_to_label
        }

        if log_gt:
            wandb_boxes['ground_truth'] = wandb_bbox_dict
        else:
            wandb_boxes['predictions'] = wandb_bbox_dict

        return wandb_boxes

    def _get_wandb_masks(self,
                         masks,
                         labels,
                         is_poly_mask=False,
                         height=None,
                         width=None):
        """Get list of structured dict for logging masks to W&B.

        Args:
            masks (list): List of masks.
            labels (int): List of label ids.
            is_poly_mask (bool): Whether the mask is polygonal or not.
                This is true for CocoDataset.
            height (int): Height of the image.
            width (int): Width of the image.

        Returns:
            Dictionary of masks to be logged.
        """
        mask_label_dict = dict()
        for mask, label in zip(masks, labels):
            label = label + 1
            # Get bitmap mask from polygon.
            if is_poly_mask:
                if height is not None and width is not None:
                    mask = polygon_to_bitmap(mask, height, width)
            # Create composite masks for each class.
            if label not in mask_label_dict.keys():
                mask_label_dict[label] = mask
            else:
                mask_label_dict[label] = np.logical_or(mask_label_dict[label],
                                                       mask)

        wandb_masks = dict()
        for key, value in mask_label_dict.items():
            # Create mask for that class.
            value = value.astype(np.uint8)
            value[value > 0] = key

            # Create dict of masks for logging.
            class_name = self.class_id_to_label[key]
            wandb_masks[class_name] = {
                'mask_data': value,
                'class_labels': self.class_id_to_label
            }

        return wandb_masks

    def _log_data_table(self):
        """Log the W&B Tables for validation data as artifact and calls
        `use_artifact` on it so that the evaluation table can use the reference
        of already uploaded images.

        This allows the data to be uploaded just once.
        """
        data_artifact = self.wandb.Artifact('val', type='dataset')
        data_artifact.add(self.data_table, 'val_data')

        if not self.wandb.run.offline:
            self.wandb.run.use_artifact(data_artifact)
            data_artifact.wait()
            self.data_table_ref = data_artifact.get('val_data')
        else:
            self.data_table_ref = self.data_table

    def _log_eval_table(self, idx):
        """Log the W&B Tables for model evaluation.

        The table will be logged multiple times creating new version. Use this
        to compare models at different intervals interactively.
        """
        pred_artifact = self.wandb.Artifact(
            f'run_{self.wandb.run.id}_pred', type='evaluation')
        pred_artifact.add(self.eval_table, 'eval_data')
        if self.by_epoch:
            aliases = ['latest', f'epoch_{idx}']
        else:
            aliases = ['latest', f'iter_{idx}']
        self.wandb.run.log_artifact(pred_artifact, aliases=aliases)