RockeyCoss
reconstruct implementation
0702ffc
raw
history blame
12.1 kB
import os
SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
# running on huggingface space
os.system(r'mkdir ckpt')
os.system(
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth -o ckpt/sam_vit_b_01ec64.pth')
os.system(
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth -o ckpt/sam_vit_l_0b3195.pth')
os.system(
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -o ckpt/sam_vit_h_4b8939.pth')
os.system(
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1'
r'/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/r50_hdetr.pth')
os.system(
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1'
r'/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_t_hdetr.pth')
os.system(
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/decay0.05_drop_path0'
r'.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_l_hdetr.pth')
os.system(r'python -m wget https://projects4jw.blob.core.windows.net/focalnet/release/detection'
r'/focalnet_large_fl4_o365_finetuned_on_coco.pth -o ckpt/focalnet_l_dino.pth')
os.system(r'python tools/convert_ckpt.py ckpt/r50_hdetr.pth ckpt/r50_hdetr.pth')
os.system(r'python tools/convert_ckpt.py ckpt/swin_t_hdetr.pth ckpt/swin_t_hdetr.pth')
os.system(r'python tools/convert_ckpt.py ckpt/swin_l_hdetr.pth ckpt/swin_l_hdetr.pth')
os.system(r'python tools/convert_ckpt.py ckpt/focalnet_l_dino.pth ckpt/focalnet_l_dino.pth')
import warnings
from collections import OrderedDict
from pathlib import Path
import gradio as gr
import numpy as np
import torch
import mmcv
from mmcv import Config
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
from mmdet.core import get_classes
from mmdet.datasets import (CocoDataset, replace_ImageToTensor)
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
from mmdet.utils import (compat_cfg, replace_cfg_vals, setup_multi_processes,
update_data_root)
config_dict = OrderedDict([('r50-hdetr_sam-vit-b', 'projects/configs/hdetr/r50-hdetr_sam-vit-b.py'),
('r50-hdetr_sam-vit-l', 'projects/configs/hdetr/r50-hdetr_sam-vit-l.py'),
('swin-t-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-b.py'),
('swin-t-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-l.py'),
('swin-l-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-b.py'),
('swin-l-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'),
# ('swin-l-hdetr_sam-vit-h', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'),
('focalnet-l-dino_sam-vit-b', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-b.py'),
# ('focalnet-l-dino_sam-vit-l', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-l.py'),
# ('focalnet-l-dino_sam-vit-h', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-h.py')
])
def init_demo_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
"""Initialize a detector from config file.
Args:
config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
cfg_options (dict): Options to override some settings in the used
config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, (str, Path)):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
if 'pretrained' in config.model:
config.model.pretrained = None
elif (config.model.get('backbone', None) is not None
and 'init_cfg' in config.model.backbone):
config.model.backbone.init_cfg = None
config.model.train_cfg = None
model = build_detector(config.model, test_cfg=config.get('test_cfg'))
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
if device == 'npu':
from mmcv.device.npu import NPUDataParallel
model = NPUDataParallel(model)
model.cfg = config
return model
def inference_demo_detector(model, imgs):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
Returns:
If imgs is a list or tuple, the same length list type results
will be returned, otherwise return the detection results directly.
"""
ori_img = imgs
if isinstance(imgs, (list, tuple)):
is_batch = True
else:
imgs = [imgs]
is_batch = False
cfg = model.cfg
device = next(model.parameters()).device # model device
if isinstance(imgs[0], np.ndarray):
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
for img in imgs:
# prepare data
if isinstance(img, np.ndarray):
# directly add img
data = dict(img=img)
else:
# add information into dict
data = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
data = test_pipeline(data)
datas.append(data)
data = collate(datas, samples_per_gpu=len(imgs))
# just get the actual data from DataContainer
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
data['img'] = [img.data[0] for img in data['img']]
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
# forward the model
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data, ori_img=ori_img)
if not is_batch:
return results[0]
else:
return results
def inference(img, config):
if img is None:
return None
print(f"config: {config}")
config = config_dict[config]
cfg = Config.fromfile(config)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMDET_DATASETS
update_data_root(cfg)
cfg = compat_cfg(cfg)
# set multi-process settings
setup_multi_processes(cfg)
# import modules from plguin/xx, registry will be updated
if hasattr(cfg, 'plugin'):
if cfg.plugin:
import importlib
if hasattr(cfg, 'plugin_dir'):
plugin_dir = cfg.plugin_dir
_module_dir = os.path.dirname(plugin_dir)
_module_dir = _module_dir.split('/')
_module_path = _module_dir[0]
for m in _module_dir[1:]:
_module_path = _module_path + '.' + m
print(_module_path)
plg_lib = importlib.import_module(_module_path)
else:
# import dir is the dirpath for the config file
_module_dir = os.path.dirname(config)
_module_dir = _module_dir.split('/')
_module_path = _module_dir[0]
for m in _module_dir[1:]:
_module_path = _module_path + '.' + m
# print(_module_path)
plg_lib = importlib.import_module(_module_path)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
if IS_CUDA_AVAILABLE or IS_MLU_AVAILABLE:
device = "cuda"
else:
device = "cpu"
model = init_demo_detector(cfg, None, device=device)
model.CLASSES = CocoDataset.CLASSES
results = inference_demo_detector(model, img)
visualize = model.show_result(
img,
results,
bbox_color=CocoDataset.PALETTE,
text_color=CocoDataset.PALETTE,
mask_color=CocoDataset.PALETTE,
show=False,
out_file=None,
score_thr=0.3
)
del model
return visualize
description = """
# <center>Prompt Segment Anything (zero-shot instance segmentation demo)</center>
Github link: [Link](https://github.com/RockeyCoss/Prompt-Segment-Anything)
You can select the model you want to use from the "Model" dropdown menu and click "Submit" to segment the image you uploaded to the "Input Image" box.
"""
if SPACE_ID is not None:
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
def main():
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Column():
with gr.Row():
with gr.Column():
input_img = gr.Image(type="numpy", label="Input Image")
model_type = gr.Dropdown(choices=list(config_dict.keys()),
value=list(config_dict.keys())[0],
label='Model',
multiselect=False)
with gr.Row():
clear_btn = gr.Button(value="Clear")
submit_btn = gr.Button(value="Submit")
output_img = gr.Image(type="numpy", label="Output")
gr.Examples(
examples=[["./assets/img1.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img2.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img3.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img4.jpg", "r50-hdetr_sam-vit-b"]],
inputs=[input_img, model_type],
outputs=output_img,
fn=inference
)
submit_btn.click(inference,
inputs=[input_img, model_type],
outputs=output_img)
clear_btn.click(lambda: [None, None], None, [input_img, output_img], queue=False)
demo.queue()
demo.launch()
if __name__ == '__main__':
main()