Spaces:
Runtime error
Runtime error
import os | |
SPACE_ID = os.getenv('SPACE_ID') | |
if SPACE_ID is not None: | |
# running on huggingface space | |
os.system(r'mkdir ckpt') | |
os.system( | |
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth -o ckpt/sam_vit_b_01ec64.pth') | |
os.system( | |
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth -o ckpt/sam_vit_l_0b3195.pth') | |
os.system( | |
r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -o ckpt/sam_vit_h_4b8939.pth') | |
os.system( | |
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1' | |
r'/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/r50_hdetr.pth') | |
os.system( | |
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1' | |
r'/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_t_hdetr.pth') | |
os.system( | |
r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/decay0.05_drop_path0' | |
r'.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_l_hdetr.pth') | |
os.system(r'python -m wget https://projects4jw.blob.core.windows.net/focalnet/release/detection' | |
r'/focalnet_large_fl4_o365_finetuned_on_coco.pth -o ckpt/focalnet_l_dino.pth') | |
os.system(r'python tools/convert_ckpt.py ckpt/r50_hdetr.pth ckpt/r50_hdetr.pth') | |
os.system(r'python tools/convert_ckpt.py ckpt/swin_t_hdetr.pth ckpt/swin_t_hdetr.pth') | |
os.system(r'python tools/convert_ckpt.py ckpt/swin_l_hdetr.pth ckpt/swin_l_hdetr.pth') | |
os.system(r'python tools/convert_ckpt.py ckpt/focalnet_l_dino.pth ckpt/focalnet_l_dino.pth') | |
import warnings | |
from collections import OrderedDict | |
from pathlib import Path | |
import gradio as gr | |
import numpy as np | |
import torch | |
import mmcv | |
from mmcv import Config | |
from mmcv.ops import RoIPool | |
from mmcv.parallel import collate, scatter | |
from mmcv.runner import load_checkpoint | |
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE | |
from mmdet.core import get_classes | |
from mmdet.datasets import (CocoDataset, replace_ImageToTensor) | |
from mmdet.datasets.pipelines import Compose | |
from mmdet.models import build_detector | |
from mmdet.utils import (compat_cfg, replace_cfg_vals, setup_multi_processes, | |
update_data_root) | |
config_dict = OrderedDict([('r50-hdetr_sam-vit-b', 'projects/configs/hdetr/r50-hdetr_sam-vit-b.py'), | |
('r50-hdetr_sam-vit-l', 'projects/configs/hdetr/r50-hdetr_sam-vit-l.py'), | |
('swin-t-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-b.py'), | |
('swin-t-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-l.py'), | |
('swin-l-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-b.py'), | |
('swin-l-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'), | |
# ('swin-l-hdetr_sam-vit-h', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'), | |
('focalnet-l-dino_sam-vit-b', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-b.py'), | |
# ('focalnet-l-dino_sam-vit-l', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-l.py'), | |
# ('focalnet-l-dino_sam-vit-h', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-h.py') | |
]) | |
def init_demo_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): | |
"""Initialize a detector from config file. | |
Args: | |
config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, | |
:obj:`Path`, or the config object. | |
checkpoint (str, optional): Checkpoint path. If left as None, the model | |
will not load any weights. | |
cfg_options (dict): Options to override some settings in the used | |
config. | |
Returns: | |
nn.Module: The constructed detector. | |
""" | |
if isinstance(config, (str, Path)): | |
config = mmcv.Config.fromfile(config) | |
elif not isinstance(config, mmcv.Config): | |
raise TypeError('config must be a filename or Config object, ' | |
f'but got {type(config)}') | |
if cfg_options is not None: | |
config.merge_from_dict(cfg_options) | |
if 'pretrained' in config.model: | |
config.model.pretrained = None | |
elif (config.model.get('backbone', None) is not None | |
and 'init_cfg' in config.model.backbone): | |
config.model.backbone.init_cfg = None | |
config.model.train_cfg = None | |
model = build_detector(config.model, test_cfg=config.get('test_cfg')) | |
if checkpoint is not None: | |
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') | |
if 'CLASSES' in checkpoint.get('meta', {}): | |
model.CLASSES = checkpoint['meta']['CLASSES'] | |
else: | |
warnings.simplefilter('once') | |
warnings.warn('Class names are not saved in the checkpoint\'s ' | |
'meta data, use COCO classes by default.') | |
model.CLASSES = get_classes('coco') | |
model.cfg = config # save the config in the model for convenience | |
model.to(device) | |
model.eval() | |
if device == 'npu': | |
from mmcv.device.npu import NPUDataParallel | |
model = NPUDataParallel(model) | |
model.cfg = config | |
return model | |
def inference_demo_detector(model, imgs): | |
"""Inference image(s) with the detector. | |
Args: | |
model (nn.Module): The loaded detector. | |
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): | |
Either image files or loaded images. | |
Returns: | |
If imgs is a list or tuple, the same length list type results | |
will be returned, otherwise return the detection results directly. | |
""" | |
ori_img = imgs | |
if isinstance(imgs, (list, tuple)): | |
is_batch = True | |
else: | |
imgs = [imgs] | |
is_batch = False | |
cfg = model.cfg | |
device = next(model.parameters()).device # model device | |
if isinstance(imgs[0], np.ndarray): | |
cfg = cfg.copy() | |
# set loading pipeline type | |
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' | |
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) | |
test_pipeline = Compose(cfg.data.test.pipeline) | |
datas = [] | |
for img in imgs: | |
# prepare data | |
if isinstance(img, np.ndarray): | |
# directly add img | |
data = dict(img=img) | |
else: | |
# add information into dict | |
data = dict(img_info=dict(filename=img), img_prefix=None) | |
# build the data pipeline | |
data = test_pipeline(data) | |
datas.append(data) | |
data = collate(datas, samples_per_gpu=len(imgs)) | |
# just get the actual data from DataContainer | |
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] | |
data['img'] = [img.data[0] for img in data['img']] | |
if next(model.parameters()).is_cuda: | |
# scatter to specified GPU | |
data = scatter(data, [device])[0] | |
else: | |
for m in model.modules(): | |
assert not isinstance( | |
m, RoIPool | |
), 'CPU inference with RoIPool is not supported currently.' | |
# forward the model | |
with torch.no_grad(): | |
results = model(return_loss=False, rescale=True, **data, ori_img=ori_img) | |
if not is_batch: | |
return results[0] | |
else: | |
return results | |
def inference(img, config): | |
if img is None: | |
return None | |
print(f"config: {config}") | |
config = config_dict[config] | |
cfg = Config.fromfile(config) | |
# replace the ${key} with the value of cfg.key | |
cfg = replace_cfg_vals(cfg) | |
# update data root according to MMDET_DATASETS | |
update_data_root(cfg) | |
cfg = compat_cfg(cfg) | |
# set multi-process settings | |
setup_multi_processes(cfg) | |
# import modules from plguin/xx, registry will be updated | |
if hasattr(cfg, 'plugin'): | |
if cfg.plugin: | |
import importlib | |
if hasattr(cfg, 'plugin_dir'): | |
plugin_dir = cfg.plugin_dir | |
_module_dir = os.path.dirname(plugin_dir) | |
_module_dir = _module_dir.split('/') | |
_module_path = _module_dir[0] | |
for m in _module_dir[1:]: | |
_module_path = _module_path + '.' + m | |
print(_module_path) | |
plg_lib = importlib.import_module(_module_path) | |
else: | |
# import dir is the dirpath for the config file | |
_module_dir = os.path.dirname(config) | |
_module_dir = _module_dir.split('/') | |
_module_path = _module_dir[0] | |
for m in _module_dir[1:]: | |
_module_path = _module_path + '.' + m | |
# print(_module_path) | |
plg_lib = importlib.import_module(_module_path) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
if IS_CUDA_AVAILABLE or IS_MLU_AVAILABLE: | |
device = "cuda" | |
else: | |
device = "cpu" | |
model = init_demo_detector(cfg, None, device=device) | |
model.CLASSES = CocoDataset.CLASSES | |
results = inference_demo_detector(model, img) | |
visualize = model.show_result( | |
img, | |
results, | |
bbox_color=CocoDataset.PALETTE, | |
text_color=CocoDataset.PALETTE, | |
mask_color=CocoDataset.PALETTE, | |
show=False, | |
out_file=None, | |
score_thr=0.3 | |
) | |
del model | |
return visualize | |
description = """ | |
# <center>Prompt Segment Anything (zero-shot instance segmentation demo)</center> | |
Github link: [Link](https://github.com/RockeyCoss/Prompt-Segment-Anything) | |
You can select the model you want to use from the "Model" dropdown menu and click "Submit" to segment the image you uploaded to the "Input Image" box. | |
""" | |
if SPACE_ID is not None: | |
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown(description) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(type="numpy", label="Input Image") | |
model_type = gr.Dropdown(choices=list(config_dict.keys()), | |
value=list(config_dict.keys())[0], | |
label='Model', | |
multiselect=False) | |
with gr.Row(): | |
clear_btn = gr.Button(value="Clear") | |
submit_btn = gr.Button(value="Submit") | |
output_img = gr.Image(type="numpy", label="Output") | |
gr.Examples( | |
examples=[["./assets/img1.jpg", "r50-hdetr_sam-vit-b"], | |
["./assets/img2.jpg", "r50-hdetr_sam-vit-b"], | |
["./assets/img3.jpg", "r50-hdetr_sam-vit-b"], | |
["./assets/img4.jpg", "r50-hdetr_sam-vit-b"]], | |
inputs=[input_img, model_type], | |
outputs=output_img, | |
fn=inference | |
) | |
submit_btn.click(inference, | |
inputs=[input_img, model_type], | |
outputs=output_img) | |
clear_btn.click(lambda: [None, None], None, [input_img, output_img], queue=False) | |
demo.queue() | |
demo.launch() | |
if __name__ == '__main__': | |
main() | |