Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from collections.abc import Sequence | |
import numpy as np | |
from mmcv.utils import print_log | |
from terminaltables import AsciiTable | |
from .bbox_overlaps import bbox_overlaps | |
def _recalls(all_ious, proposal_nums, thrs): | |
img_num = all_ious.shape[0] | |
total_gt_num = sum([ious.shape[0] for ious in all_ious]) | |
_ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32) | |
for k, proposal_num in enumerate(proposal_nums): | |
tmp_ious = np.zeros(0) | |
for i in range(img_num): | |
ious = all_ious[i][:, :proposal_num].copy() | |
gt_ious = np.zeros((ious.shape[0])) | |
if ious.size == 0: | |
tmp_ious = np.hstack((tmp_ious, gt_ious)) | |
continue | |
for j in range(ious.shape[0]): | |
gt_max_overlaps = ious.argmax(axis=1) | |
max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps] | |
gt_idx = max_ious.argmax() | |
gt_ious[j] = max_ious[gt_idx] | |
box_idx = gt_max_overlaps[gt_idx] | |
ious[gt_idx, :] = -1 | |
ious[:, box_idx] = -1 | |
tmp_ious = np.hstack((tmp_ious, gt_ious)) | |
_ious[k, :] = tmp_ious | |
_ious = np.fliplr(np.sort(_ious, axis=1)) | |
recalls = np.zeros((proposal_nums.size, thrs.size)) | |
for i, thr in enumerate(thrs): | |
recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num) | |
return recalls | |
def set_recall_param(proposal_nums, iou_thrs): | |
"""Check proposal_nums and iou_thrs and set correct format.""" | |
if isinstance(proposal_nums, Sequence): | |
_proposal_nums = np.array(proposal_nums) | |
elif isinstance(proposal_nums, int): | |
_proposal_nums = np.array([proposal_nums]) | |
else: | |
_proposal_nums = proposal_nums | |
if iou_thrs is None: | |
_iou_thrs = np.array([0.5]) | |
elif isinstance(iou_thrs, Sequence): | |
_iou_thrs = np.array(iou_thrs) | |
elif isinstance(iou_thrs, float): | |
_iou_thrs = np.array([iou_thrs]) | |
else: | |
_iou_thrs = iou_thrs | |
return _proposal_nums, _iou_thrs | |
def eval_recalls(gts, | |
proposals, | |
proposal_nums=None, | |
iou_thrs=0.5, | |
logger=None, | |
use_legacy_coordinate=False): | |
"""Calculate recalls. | |
Args: | |
gts (list[ndarray]): a list of arrays of shape (n, 4) | |
proposals (list[ndarray]): a list of arrays of shape (k, 4) or (k, 5) | |
proposal_nums (int | Sequence[int]): Top N proposals to be evaluated. | |
iou_thrs (float | Sequence[float]): IoU thresholds. Default: 0.5. | |
logger (logging.Logger | str | None): The way to print the recall | |
summary. See `mmcv.utils.print_log()` for details. Default: None. | |
use_legacy_coordinate (bool): Whether use coordinate system | |
in mmdet v1.x. "1" was added to both height and width | |
which means w, h should be | |
computed as 'x2 - x1 + 1` and 'y2 - y1 + 1'. Default: False. | |
Returns: | |
ndarray: recalls of different ious and proposal nums | |
""" | |
img_num = len(gts) | |
assert img_num == len(proposals) | |
proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs) | |
all_ious = [] | |
for i in range(img_num): | |
if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: | |
scores = proposals[i][:, 4] | |
sort_idx = np.argsort(scores)[::-1] | |
img_proposal = proposals[i][sort_idx, :] | |
else: | |
img_proposal = proposals[i] | |
prop_num = min(img_proposal.shape[0], proposal_nums[-1]) | |
if gts[i] is None or gts[i].shape[0] == 0: | |
ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) | |
else: | |
ious = bbox_overlaps( | |
gts[i], | |
img_proposal[:prop_num, :4], | |
use_legacy_coordinate=use_legacy_coordinate) | |
all_ious.append(ious) | |
all_ious = np.array(all_ious) | |
recalls = _recalls(all_ious, proposal_nums, iou_thrs) | |
print_recall_summary(recalls, proposal_nums, iou_thrs, logger=logger) | |
return recalls | |
def print_recall_summary(recalls, | |
proposal_nums, | |
iou_thrs, | |
row_idxs=None, | |
col_idxs=None, | |
logger=None): | |
"""Print recalls in a table. | |
Args: | |
recalls (ndarray): calculated from `bbox_recalls` | |
proposal_nums (ndarray or list): top N proposals | |
iou_thrs (ndarray or list): iou thresholds | |
row_idxs (ndarray): which rows(proposal nums) to print | |
col_idxs (ndarray): which cols(iou thresholds) to print | |
logger (logging.Logger | str | None): The way to print the recall | |
summary. See `mmcv.utils.print_log()` for details. Default: None. | |
""" | |
proposal_nums = np.array(proposal_nums, dtype=np.int32) | |
iou_thrs = np.array(iou_thrs) | |
if row_idxs is None: | |
row_idxs = np.arange(proposal_nums.size) | |
if col_idxs is None: | |
col_idxs = np.arange(iou_thrs.size) | |
row_header = [''] + iou_thrs[col_idxs].tolist() | |
table_data = [row_header] | |
for i, num in enumerate(proposal_nums[row_idxs]): | |
row = [f'{val:.3f}' for val in recalls[row_idxs[i], col_idxs].tolist()] | |
row.insert(0, num) | |
table_data.append(row) | |
table = AsciiTable(table_data) | |
print_log('\n' + table.table, logger=logger) | |
def plot_num_recall(recalls, proposal_nums): | |
"""Plot Proposal_num-Recalls curve. | |
Args: | |
recalls(ndarray or list): shape (k,) | |
proposal_nums(ndarray or list): same shape as `recalls` | |
""" | |
if isinstance(proposal_nums, np.ndarray): | |
_proposal_nums = proposal_nums.tolist() | |
else: | |
_proposal_nums = proposal_nums | |
if isinstance(recalls, np.ndarray): | |
_recalls = recalls.tolist() | |
else: | |
_recalls = recalls | |
import matplotlib.pyplot as plt | |
f = plt.figure() | |
plt.plot([0] + _proposal_nums, [0] + _recalls) | |
plt.xlabel('Proposal num') | |
plt.ylabel('Recall') | |
plt.axis([0, proposal_nums.max(), 0, 1]) | |
f.show() | |
def plot_iou_recall(recalls, iou_thrs): | |
"""Plot IoU-Recalls curve. | |
Args: | |
recalls(ndarray or list): shape (k,) | |
iou_thrs(ndarray or list): same shape as `recalls` | |
""" | |
if isinstance(iou_thrs, np.ndarray): | |
_iou_thrs = iou_thrs.tolist() | |
else: | |
_iou_thrs = iou_thrs | |
if isinstance(recalls, np.ndarray): | |
_recalls = recalls.tolist() | |
else: | |
_recalls = recalls | |
import matplotlib.pyplot as plt | |
f = plt.figure() | |
plt.plot(_iou_thrs + [1.0], _recalls + [0.]) | |
plt.xlabel('IoU') | |
plt.ylabel('Recall') | |
plt.axis([iou_thrs.min(), 1, 0, 1]) | |
f.show() | |