RockeyCoss
add code files”
51f6859
raw
history blame
5.15 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from mmcv.parallel import is_module_wrapper
from mmcv.runner.hooks import HOOKS, Hook
class BaseEMAHook(Hook):
"""Exponential Moving Average Hook.
Use Exponential Moving Average on all parameters of model in training
process. All parameters have a ema backup, which update by the formula
as below. EMAHook takes priority over EvalHook and CheckpointHook. Note,
the original model parameters are actually saved in ema field after train.
Args:
momentum (float): The momentum used for updating ema parameter.
Ema's parameter are updated with the formula:
`ema_param = (1-momentum) * ema_param + momentum * cur_param`.
Defaults to 0.0002.
skip_buffers (bool): Whether to skip the model buffers, such as
batchnorm running stats (running_mean, running_var), it does not
perform the ema operation. Default to False.
interval (int): Update ema parameter every interval iteration.
Defaults to 1.
resume_from (str, optional): The checkpoint path. Defaults to None.
momentum_fun (func, optional): The function to change momentum
during early iteration (also warmup) to help early training.
It uses `momentum` as a constant. Defaults to None.
"""
def __init__(self,
momentum=0.0002,
interval=1,
skip_buffers=False,
resume_from=None,
momentum_fun=None):
assert 0 < momentum < 1
self.momentum = momentum
self.skip_buffers = skip_buffers
self.interval = interval
self.checkpoint = resume_from
self.momentum_fun = momentum_fun
def before_run(self, runner):
"""To resume model with it's ema parameters more friendly.
Register ema parameter as ``named_buffer`` to model.
"""
model = runner.model
if is_module_wrapper(model):
model = model.module
self.param_ema_buffer = {}
if self.skip_buffers:
self.model_parameters = dict(model.named_parameters())
else:
self.model_parameters = model.state_dict()
for name, value in self.model_parameters.items():
# "." is not allowed in module's buffer name
buffer_name = f"ema_{name.replace('.', '_')}"
self.param_ema_buffer[name] = buffer_name
model.register_buffer(buffer_name, value.data.clone())
self.model_buffers = dict(model.named_buffers())
if self.checkpoint is not None:
runner.resume(self.checkpoint)
def get_momentum(self, runner):
return self.momentum_fun(runner.iter) if self.momentum_fun else \
self.momentum
def after_train_iter(self, runner):
"""Update ema parameter every self.interval iterations."""
if (runner.iter + 1) % self.interval != 0:
return
momentum = self.get_momentum(runner)
for name, parameter in self.model_parameters.items():
# exclude num_tracking
if parameter.dtype.is_floating_point:
buffer_name = self.param_ema_buffer[name]
buffer_parameter = self.model_buffers[buffer_name]
buffer_parameter.mul_(1 - momentum).add_(
parameter.data, alpha=momentum)
def after_train_epoch(self, runner):
"""We load parameter values from ema backup to model before the
EvalHook."""
self._swap_ema_parameters()
def before_train_epoch(self, runner):
"""We recover model's parameter from ema backup after last epoch's
EvalHook."""
self._swap_ema_parameters()
def _swap_ema_parameters(self):
"""Swap the parameter of model with parameter in ema_buffer."""
for name, value in self.model_parameters.items():
temp = value.data.clone()
ema_buffer = self.model_buffers[self.param_ema_buffer[name]]
value.data.copy_(ema_buffer.data)
ema_buffer.data.copy_(temp)
@HOOKS.register_module()
class ExpMomentumEMAHook(BaseEMAHook):
"""EMAHook using exponential momentum strategy.
Args:
total_iter (int): The total number of iterations of EMA momentum.
Defaults to 2000.
"""
def __init__(self, total_iter=2000, **kwargs):
super(ExpMomentumEMAHook, self).__init__(**kwargs)
self.momentum_fun = lambda x: (1 - self.momentum) * math.exp(-(
1 + x) / total_iter) + self.momentum
@HOOKS.register_module()
class LinearMomentumEMAHook(BaseEMAHook):
"""EMAHook using linear momentum strategy.
Args:
warm_up (int): During first warm_up steps, we may use smaller decay
to update ema parameters more slowly. Defaults to 100.
"""
def __init__(self, warm_up=100, **kwargs):
super(LinearMomentumEMAHook, self).__init__(**kwargs)
self.momentum_fun = lambda x: min(self.momentum**self.interval,
(1 + x) / (warm_up + x))