RockeyCoss
add code files”
51f6859
raw
history blame
21.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import sys
import cv2
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as mask_util
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET
from ..mask.structures import bitmap_to_polygon
from ..utils import mask2ndarray
from .palette import get_palette, palette_val
__all__ = [
'color_val_matplotlib', 'draw_masks', 'draw_bboxes', 'draw_labels',
'imshow_det_bboxes', 'imshow_gt_det_bboxes'
]
EPS = 1e-2
def color_val_matplotlib(color):
"""Convert various input in BGR order to normalized RGB matplotlib color
tuples.
Args:
color (:obj`Color` | str | tuple | int | ndarray): Color inputs.
Returns:
tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
"""
color = mmcv.color_val(color)
color = [color / 255 for color in color[::-1]]
return tuple(color)
def _get_adaptive_scales(areas, min_area=800, max_area=30000):
"""Get adaptive scales according to areas.
The scale range is [0.5, 1.0]. When the area is less than
``'min_area'``, the scale is 0.5 while the area is larger than
``'max_area'``, the scale is 1.0.
Args:
areas (ndarray): The areas of bboxes or masks with the
shape of (n, ).
min_area (int): Lower bound areas for adaptive scales.
Default: 800.
max_area (int): Upper bound areas for adaptive scales.
Default: 30000.
Returns:
ndarray: The adaotive scales with the shape of (n, ).
"""
scales = 0.5 + (areas - min_area) / (max_area - min_area)
scales = np.clip(scales, 0.5, 1.0)
return scales
def _get_bias_color(base, max_dist=30):
"""Get different colors for each masks.
Get different colors for each masks by adding a bias
color to the base category color.
Args:
base (ndarray): The base category color with the shape
of (3, ).
max_dist (int): The max distance of bias. Default: 30.
Returns:
ndarray: The new color for a mask with the shape of (3, ).
"""
new_color = base + np.random.randint(
low=-max_dist, high=max_dist + 1, size=3)
return np.clip(new_color, 0, 255, new_color)
def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2):
"""Draw bounding boxes on the axes.
Args:
ax (matplotlib.Axes): The input axes.
bboxes (ndarray): The input bounding boxes with the shape
of (n, 4).
color (list[tuple] | matplotlib.color): the colors for each
bounding boxes.
alpha (float): Transparency of bounding boxes. Default: 0.8.
thickness (int): Thickness of lines. Default: 2.
Returns:
matplotlib.Axes: The result axes.
"""
polygons = []
for i, bbox in enumerate(bboxes):
bbox_int = bbox.astype(np.int32)
poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
[bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
p = PatchCollection(
polygons,
facecolor='none',
edgecolors=color,
linewidths=thickness,
alpha=alpha)
ax.add_collection(p)
return ax
def draw_labels(ax,
labels,
positions,
scores=None,
class_names=None,
color='w',
font_size=8,
scales=None,
horizontal_alignment='left'):
"""Draw labels on the axes.
Args:
ax (matplotlib.Axes): The input axes.
labels (ndarray): The labels with the shape of (n, ).
positions (ndarray): The positions to draw each labels.
scores (ndarray): The scores for each labels.
class_names (list[str]): The class names.
color (list[tuple] | matplotlib.color): The colors for labels.
font_size (int): Font size of texts. Default: 8.
scales (list[float]): Scales of texts. Default: None.
horizontal_alignment (str): The horizontal alignment method of
texts. Default: 'left'.
Returns:
matplotlib.Axes: The result axes.
"""
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = class_names[
label] if class_names is not None else f'class {label}'
if scores is not None:
label_text += f'|{scores[i]:.02f}'
text_color = color[i] if isinstance(color, list) else color
font_size_mask = font_size if scales is None else font_size * scales[i]
ax.text(
pos[0],
pos[1],
f'{label_text}',
bbox={
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
},
color=text_color,
fontsize=font_size_mask,
verticalalignment='top',
horizontalalignment=horizontal_alignment)
return ax
def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8):
"""Draw masks on the image and their edges on the axes.
Args:
ax (matplotlib.Axes): The input axes.
img (ndarray): The image with the shape of (3, h, w).
masks (ndarray): The masks with the shape of (n, h, w).
color (ndarray): The colors for each masks with the shape
of (n, 3).
with_edge (bool): Whether to draw edges. Default: True.
alpha (float): Transparency of bounding boxes. Default: 0.8.
Returns:
matplotlib.Axes: The result axes.
ndarray: The result image.
"""
taken_colors = set([0, 0, 0])
if color is None:
random_colors = np.random.randint(0, 255, (masks.size(0), 3))
color = [tuple(c) for c in random_colors]
color = np.array(color, dtype=np.uint8)
polygons = []
for i, mask in enumerate(masks):
if with_edge:
contours, _ = bitmap_to_polygon(mask)
polygons += [Polygon(c) for c in contours]
color_mask = color[i]
while tuple(color_mask) in taken_colors:
color_mask = _get_bias_color(color_mask)
taken_colors.add(tuple(color_mask))
mask = mask.astype(bool)
img[mask] = img[mask] * (1 - alpha) + color_mask * alpha
p = PatchCollection(
polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8)
ax.add_collection(p)
return ax, img
def imshow_det_bboxes(img,
bboxes=None,
labels=None,
segms=None,
class_names=None,
score_thr=0,
bbox_color='green',
text_color='green',
mask_color=None,
thickness=2,
font_size=8,
win_name='',
show=True,
wait_time=0,
out_file=None):
"""Draw bboxes and class labels (with scores) on an image.
Args:
img (str | ndarray): The image to be displayed.
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5).
labels (ndarray): Labels of bboxes.
segms (ndarray | None): Masks, shaped (n,h,w) or None.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0.
bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: 'green'.
text_color (list[tuple] | tuple | str | None): Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: 'green'.
mask_color (list[tuple] | tuple | str | None, optional): Colors of
masks. If a single color is given, it will be applied to all
classes. The tuple of color should be in RGB order.
Default: None.
thickness (int): Thickness of lines. Default: 2.
font_size (int): Font size of texts. Default: 13.
show (bool): Whether to show the image. Default: True.
win_name (str): The window name. Default: ''.
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None.
Returns:
ndarray: The image with bboxes drawn on it.
"""
assert bboxes is None or bboxes.ndim == 2, \
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
assert labels.ndim == 1, \
f' labels ndim should be 1, but its ndim is {labels.ndim}.'
assert bboxes is None or bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
assert bboxes is None or bboxes.shape[0] <= labels.shape[0], \
'labels.shape[0] should not be less than bboxes.shape[0].'
assert segms is None or segms.shape[0] == labels.shape[0], \
'segms.shape[0] and labels.shape[0] should have the same length.'
assert segms is not None or bboxes is not None, \
'segms and bboxes should not be None at the same time.'
img = mmcv.imread(img).astype(np.uint8)
if score_thr > 0:
assert bboxes is not None and bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
if segms is not None:
segms = segms[inds, ...]
img = mmcv.bgr2rgb(img)
width, height = img.shape[1], img.shape[0]
img = np.ascontiguousarray(img)
fig = plt.figure(win_name, frameon=False)
plt.title(win_name)
canvas = fig.canvas
dpi = fig.get_dpi()
# add a small EPS to avoid precision lost due to matplotlib's truncation
# (https://github.com/matplotlib/matplotlib/issues/15363)
fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)
# remove white edges by set subplot margin
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax = plt.gca()
ax.axis('off')
max_label = int(max(labels) if len(labels) > 0 else 0)
text_palette = palette_val(get_palette(text_color, max_label + 1))
text_colors = [text_palette[label] for label in labels]
num_bboxes = 0
if bboxes is not None:
num_bboxes = bboxes.shape[0]
bbox_palette = palette_val(get_palette(bbox_color, max_label + 1))
colors = [bbox_palette[label] for label in labels[:num_bboxes]]
draw_bboxes(ax, bboxes, colors, alpha=0.8, thickness=thickness)
horizontal_alignment = 'left'
positions = bboxes[:, :2].astype(np.int32) + thickness
areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas)
scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
draw_labels(
ax,
labels[:num_bboxes],
positions,
scores=scores,
class_names=class_names,
color=text_colors,
font_size=font_size,
scales=scales,
horizontal_alignment=horizontal_alignment)
if segms is not None:
mask_palette = get_palette(mask_color, max_label + 1)
colors = [mask_palette[label] for label in labels]
colors = np.array(colors, dtype=np.uint8)
draw_masks(ax, img, segms, colors, with_edge=True)
if num_bboxes < segms.shape[0]:
segms = segms[num_bboxes:]
horizontal_alignment = 'center'
areas = []
positions = []
for mask in segms:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
largest_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[largest_id])
areas.append(stats[largest_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
draw_labels(
ax,
labels[num_bboxes:],
positions,
class_names=class_names,
color=text_colors,
font_size=font_size,
scales=scales,
horizontal_alignment=horizontal_alignment)
plt.imshow(img)
stream, _ = canvas.print_to_buffer()
buffer = np.frombuffer(stream, dtype='uint8')
if sys.platform == 'darwin':
width, height = canvas.get_width_height(physical=True)
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
img = rgb.astype('uint8')
img = mmcv.rgb2bgr(img)
if show:
# We do not use cv2 for display because in some cases, opencv will
# conflict with Qt, it will output a warning: Current thread
# is not the object's thread. You can refer to
# https://github.com/opencv/opencv-python/issues/46 for details
if wait_time == 0:
plt.show()
else:
plt.show(block=False)
plt.pause(wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
plt.close()
return img
def imshow_gt_det_bboxes(img,
annotation,
result,
class_names=None,
score_thr=0,
gt_bbox_color=(61, 102, 255),
gt_text_color=(200, 200, 200),
gt_mask_color=(61, 102, 255),
det_bbox_color=(241, 101, 72),
det_text_color=(200, 200, 200),
det_mask_color=(241, 101, 72),
thickness=2,
font_size=13,
win_name='',
show=True,
wait_time=0,
out_file=None,
overlay_gt_pred=True):
"""General visualization GT and result function.
Args:
img (str | ndarray): The image to be displayed.
annotation (dict): Ground truth annotations where contain keys of
'gt_bboxes' and 'gt_labels' or 'gt_masks'.
result (tuple[list] | list): The detection result, can be either
(bbox, segm) or just bbox.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0.
gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (61, 102, 255).
gt_text_color (list[tuple] | tuple | str | None): Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (200, 200, 200).
gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of
masks. If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (61, 102, 255).
det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (241, 101, 72).
det_text_color (list[tuple] | tuple | str | None):Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (200, 200, 200).
det_mask_color (list[tuple] | tuple | str | None, optional): Color of
masks. If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (241, 101, 72).
thickness (int): Thickness of lines. Default: 2.
font_size (int): Font size of texts. Default: 13.
win_name (str): The window name. Default: ''.
show (bool): Whether to show the image. Default: True.
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None.
overlay_gt_pred (bool): Whether to plot gts and predictions on the
same image. If False, predictions and gts will be plotted on two same
image which will be concatenated in vertical direction. The image
above is drawn with gt, and the image below is drawn with the
prediction result. Default: True.
Returns:
ndarray: The image with bboxes or masks drawn on it.
"""
assert 'gt_bboxes' in annotation
assert 'gt_labels' in annotation
assert isinstance(result, (tuple, list, dict)), 'Expected ' \
f'tuple or list or dict, but get {type(result)}'
gt_bboxes = annotation['gt_bboxes']
gt_labels = annotation['gt_labels']
gt_masks = annotation.get('gt_masks', None)
if gt_masks is not None:
gt_masks = mask2ndarray(gt_masks)
gt_seg = annotation.get('gt_semantic_seg', None)
if gt_seg is not None:
pad_value = 255 # the padding value of gt_seg
sem_labels = np.unique(gt_seg)
all_labels = np.concatenate((gt_labels, sem_labels), axis=0)
all_labels, counts = np.unique(all_labels, return_counts=True)
stuff_labels = all_labels[np.logical_and(counts < 2,
all_labels != pad_value)]
stuff_masks = gt_seg[None] == stuff_labels[:, None, None]
gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0)
gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)),
axis=0)
# If you need to show the bounding boxes,
# please comment the following line
# gt_bboxes = None
img = mmcv.imread(img)
img_with_gt = imshow_det_bboxes(
img,
gt_bboxes,
gt_labels,
gt_masks,
class_names=class_names,
bbox_color=gt_bbox_color,
text_color=gt_text_color,
mask_color=gt_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=False)
if not isinstance(result, dict):
if isinstance(result, tuple):
bbox_result, segm_result = result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = result, None
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
segms = None
if segm_result is not None and len(labels) > 0: # non empty
segms = mmcv.concat_list(segm_result)
segms = mask_util.decode(segms)
segms = segms.transpose(2, 0, 1)
else:
assert class_names is not None, 'We need to know the number ' \
'of classes.'
VOID = len(class_names)
bboxes = None
pan_results = result['pan_results']
# keep objects ahead
ids = np.unique(pan_results)[::-1]
legal_indices = ids != VOID
ids = ids[legal_indices]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (pan_results[None] == ids[:, None, None])
if overlay_gt_pred:
img = imshow_det_bboxes(
img_with_gt,
bboxes,
labels,
segms=segms,
class_names=class_names,
score_thr=score_thr,
bbox_color=det_bbox_color,
text_color=det_text_color,
mask_color=det_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=show,
wait_time=wait_time,
out_file=out_file)
else:
img_with_det = imshow_det_bboxes(
img,
bboxes,
labels,
segms=segms,
class_names=class_names,
score_thr=score_thr,
bbox_color=det_bbox_color,
text_color=det_text_color,
mask_color=det_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=False)
img = np.concatenate([img_with_gt, img_with_det], axis=0)
plt.imshow(img)
if show:
if wait_time == 0:
plt.show()
else:
plt.show(block=False)
plt.pause(wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
plt.close()
return img