Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmcv.runner import BaseModule | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from ..utils import CSPLayer | |
class Focus(nn.Module): | |
"""Focus width and height information into channel space. | |
Args: | |
in_channels (int): The input channels of this Module. | |
out_channels (int): The output channels of this Module. | |
kernel_size (int): The kernel size of the convolution. Default: 1 | |
stride (int): The stride of the convolution. Default: 1 | |
conv_cfg (dict): Config dict for convolution layer. Default: None, | |
which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN', momentum=0.03, eps=0.001). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='Swish'). | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish')): | |
super().__init__() | |
self.conv = ConvModule( | |
in_channels * 4, | |
out_channels, | |
kernel_size, | |
stride, | |
padding=(kernel_size - 1) // 2, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def forward(self, x): | |
# shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) | |
patch_top_left = x[..., ::2, ::2] | |
patch_top_right = x[..., ::2, 1::2] | |
patch_bot_left = x[..., 1::2, ::2] | |
patch_bot_right = x[..., 1::2, 1::2] | |
x = torch.cat( | |
( | |
patch_top_left, | |
patch_bot_left, | |
patch_top_right, | |
patch_bot_right, | |
), | |
dim=1, | |
) | |
return self.conv(x) | |
class SPPBottleneck(BaseModule): | |
"""Spatial pyramid pooling layer used in YOLOv3-SPP. | |
Args: | |
in_channels (int): The input channels of this Module. | |
out_channels (int): The output channels of this Module. | |
kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling | |
layers. Default: (5, 9, 13). | |
conv_cfg (dict): Config dict for convolution layer. Default: None, | |
which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='Swish'). | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_sizes=(5, 9, 13), | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
init_cfg=None): | |
super().__init__(init_cfg) | |
mid_channels = in_channels // 2 | |
self.conv1 = ConvModule( | |
in_channels, | |
mid_channels, | |
1, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.poolings = nn.ModuleList([ | |
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) | |
for ks in kernel_sizes | |
]) | |
conv2_channels = mid_channels * (len(kernel_sizes) + 1) | |
self.conv2 = ConvModule( | |
conv2_channels, | |
out_channels, | |
1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1) | |
x = self.conv2(x) | |
return x | |
class CSPDarknet(BaseModule): | |
"""CSP-Darknet backbone used in YOLOv5 and YOLOX. | |
Args: | |
arch (str): Architecture of CSP-Darknet, from {P5, P6}. | |
Default: P5. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Default: 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Default: 1.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Default: (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Default: -1. | |
use_depthwise (bool): Whether to use depthwise separable convolution. | |
Default: False. | |
arch_ovewrite(list): Overwrite default arch settings. Default: None. | |
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP | |
layers. Default: (5, 9, 13). | |
conv_cfg (dict): Config dict for convolution layer. Default: None. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Default: dict(type='BN', requires_grad=True). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='LeakyReLU', negative_slope=0.1). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
Example: | |
>>> from mmdet.models import CSPDarknet | |
>>> import torch | |
>>> self = CSPDarknet(depth=53) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 416, 416) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
... | |
(1, 256, 52, 52) | |
(1, 512, 26, 26) | |
(1, 1024, 13, 13) | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False], | |
[256, 512, 9, True, False], [512, 1024, 3, False, True]], | |
'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False], | |
[256, 512, 9, True, False], [512, 768, 3, True, False], | |
[768, 1024, 3, False, True]] | |
} | |
def __init__(self, | |
arch='P5', | |
deepen_factor=1.0, | |
widen_factor=1.0, | |
out_indices=(2, 3, 4), | |
frozen_stages=-1, | |
use_depthwise=False, | |
arch_ovewrite=None, | |
spp_kernal_sizes=(5, 9, 13), | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
norm_eval=False, | |
init_cfg=dict( | |
type='Kaiming', | |
layer='Conv2d', | |
a=math.sqrt(5), | |
distribution='uniform', | |
mode='fan_in', | |
nonlinearity='leaky_relu')): | |
super().__init__(init_cfg) | |
arch_setting = self.arch_settings[arch] | |
if arch_ovewrite: | |
arch_setting = arch_ovewrite | |
assert set(out_indices).issubset( | |
i for i in range(len(arch_setting) + 1)) | |
if frozen_stages not in range(-1, len(arch_setting) + 1): | |
raise ValueError('frozen_stages must be in range(-1, ' | |
'len(arch_setting) + 1). But received ' | |
f'{frozen_stages}') | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.use_depthwise = use_depthwise | |
self.norm_eval = norm_eval | |
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule | |
self.stem = Focus( | |
3, | |
int(arch_setting[0][0] * widen_factor), | |
kernel_size=3, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.layers = ['stem'] | |
for i, (in_channels, out_channels, num_blocks, add_identity, | |
use_spp) in enumerate(arch_setting): | |
in_channels = int(in_channels * widen_factor) | |
out_channels = int(out_channels * widen_factor) | |
num_blocks = max(round(num_blocks * deepen_factor), 1) | |
stage = [] | |
conv_layer = conv( | |
in_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(conv_layer) | |
if use_spp: | |
spp = SPPBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=spp_kernal_sizes, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(spp) | |
csp_layer = CSPLayer( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
use_depthwise=use_depthwise, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(csp_layer) | |
self.add_module(f'stage{i + 1}', nn.Sequential(*stage)) | |
self.layers.append(f'stage{i + 1}') | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for i in range(self.frozen_stages + 1): | |
m = getattr(self, self.layers[i]) | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(CSPDarknet, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
def forward(self, x): | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |