Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (anchor_inside_flags, build_assigner, build_bbox_coder, | |
build_prior_generator, build_sampler, images_to_levels, | |
multi_apply, unmap) | |
from ..builder import HEADS, build_loss | |
from .base_dense_head import BaseDenseHead | |
from .dense_test_mixins import BBoxTestMixin | |
class AnchorHead(BaseDenseHead, BBoxTestMixin): | |
"""Anchor-based head (RPN, RetinaNet, SSD, etc.). | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels. Used in child classes. | |
anchor_generator (dict): Config dict for anchor generator | |
bbox_coder (dict): Config of bounding box coder. | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Default False. It should be `True` when | |
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
loss_cls (dict): Config of classification loss. | |
loss_bbox (dict): Config of localization loss. | |
train_cfg (dict): Training config of anchor head. | |
test_cfg (dict): Testing config of anchor head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" # noqa: W605 | |
def __init__(self, | |
num_classes, | |
in_channels, | |
feat_channels=256, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
scales=[8, 16, 32], | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
clip_border=True, | |
target_means=(.0, .0, .0, .0), | |
target_stds=(1.0, 1.0, 1.0, 1.0)), | |
reg_decoded_bbox=False, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0), | |
loss_bbox=dict( | |
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)): | |
super(AnchorHead, self).__init__(init_cfg) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.feat_channels = feat_channels | |
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
if self.use_sigmoid_cls: | |
self.cls_out_channels = num_classes | |
else: | |
self.cls_out_channels = num_classes + 1 | |
if self.cls_out_channels <= 0: | |
raise ValueError(f'num_classes={num_classes} is too small') | |
self.reg_decoded_bbox = reg_decoded_bbox | |
self.bbox_coder = build_bbox_coder(bbox_coder) | |
self.loss_cls = build_loss(loss_cls) | |
self.loss_bbox = build_loss(loss_bbox) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
if self.train_cfg: | |
self.assigner = build_assigner(self.train_cfg.assigner) | |
if hasattr(self.train_cfg, | |
'sampler') and self.train_cfg.sampler.type.split( | |
'.')[-1] != 'PseudoSampler': | |
self.sampling = True | |
sampler_cfg = self.train_cfg.sampler | |
# avoid BC-breaking | |
if loss_cls['type'] in [ | |
'FocalLoss', 'GHMC', 'QualityFocalLoss' | |
]: | |
warnings.warn( | |
'DeprecationWarning: Determining whether to sampling' | |
'by loss type is deprecated, please delete sampler in' | |
'your config when using `FocalLoss`, `GHMC`, ' | |
'`QualityFocalLoss` or other FocalLoss variant.') | |
self.sampling = False | |
sampler_cfg = dict(type='PseudoSampler') | |
else: | |
self.sampling = False | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.fp16_enabled = False | |
self.prior_generator = build_prior_generator(anchor_generator) | |
# Usually the numbers of anchors for each level are the same | |
# except SSD detectors. So it is an int in the most dense | |
# heads but a list of int in SSDHead | |
self.num_base_priors = self.prior_generator.num_base_priors[0] | |
self._init_layers() | |
def num_anchors(self): | |
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' | |
'for consistency or also use ' | |
'`num_base_priors` instead') | |
return self.prior_generator.num_base_priors[0] | |
def anchor_generator(self): | |
warnings.warn('DeprecationWarning: anchor_generator is deprecated, ' | |
'please use "prior_generator" instead') | |
return self.prior_generator | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.conv_cls = nn.Conv2d(self.in_channels, | |
self.num_base_priors * self.cls_out_channels, | |
1) | |
self.conv_reg = nn.Conv2d(self.in_channels, self.num_base_priors * 4, | |
1) | |
def forward_single(self, x): | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls scores for a single scale level \ | |
the channels number is num_base_priors * num_classes. | |
bbox_pred (Tensor): Box energies / deltas for a single scale \ | |
level, the channels number is num_base_priors * 4. | |
""" | |
cls_score = self.conv_cls(x) | |
bbox_pred = self.conv_reg(x) | |
return cls_score, bbox_pred | |
def forward(self, feats): | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: A tuple of classification scores and bbox prediction. | |
- cls_scores (list[Tensor]): Classification scores for all \ | |
scale levels, each is a 4D-tensor, the channels number \ | |
is num_base_priors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all \ | |
scale levels, each is a 4D-tensor, the channels number \ | |
is num_base_priors * 4. | |
""" | |
return multi_apply(self.forward_single, feats) | |
def get_anchors(self, featmap_sizes, img_metas, device='cuda'): | |
"""Get anchors according to feature map sizes. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
img_metas (list[dict]): Image meta info. | |
device (torch.device | str): Device for returned tensors | |
Returns: | |
tuple: | |
anchor_list (list[Tensor]): Anchors of each image. | |
valid_flag_list (list[Tensor]): Valid flags of each image. | |
""" | |
num_imgs = len(img_metas) | |
# since feature map sizes of all images are the same, we only compute | |
# anchors for one time | |
multi_level_anchors = self.prior_generator.grid_priors( | |
featmap_sizes, device=device) | |
anchor_list = [multi_level_anchors for _ in range(num_imgs)] | |
# for each image, we compute valid flags of multi level anchors | |
valid_flag_list = [] | |
for img_id, img_meta in enumerate(img_metas): | |
multi_level_flags = self.prior_generator.valid_flags( | |
featmap_sizes, img_meta['pad_shape'], device) | |
valid_flag_list.append(multi_level_flags) | |
return anchor_list, valid_flag_list | |
def _get_targets_single(self, | |
flat_anchors, | |
valid_flags, | |
gt_bboxes, | |
gt_bboxes_ignore, | |
gt_labels, | |
img_meta, | |
label_channels=1, | |
unmap_outputs=True): | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
Args: | |
flat_anchors (Tensor): Multi-level anchors of the image, which are | |
concatenated into a single tensor of shape (num_anchors ,4) | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_anchors,). | |
gt_bboxes (Tensor): Ground truth bboxes of the image, | |
shape (num_gts, 4). | |
gt_bboxes_ignore (Tensor): Ground truth bboxes to be | |
ignored, shape (num_ignored_gts, 4). | |
img_meta (dict): Meta info of the image. | |
gt_labels (Tensor): Ground truth labels of each box, | |
shape (num_gts,). | |
label_channels (int): Channel of label. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: | |
labels_list (list[Tensor]): Labels of each level | |
label_weights_list (list[Tensor]): Label weights of each level | |
bbox_targets_list (list[Tensor]): BBox targets of each level | |
bbox_weights_list (list[Tensor]): BBox weights of each level | |
num_total_pos (int): Number of positive samples in all images | |
num_total_neg (int): Number of negative samples in all images | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg.allowed_border) | |
if not inside_flags.any(): | |
return (None, ) * 7 | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags, :] | |
assign_result = self.assigner.assign( | |
anchors, gt_bboxes, gt_bboxes_ignore, | |
None if self.sampling else gt_labels) | |
sampling_result = self.sampler.sample(assign_result, anchors, | |
gt_bboxes) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
bbox_weights = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
if not self.reg_decoded_bbox: | |
pos_bbox_targets = self.bbox_coder.encode( | |
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) | |
else: | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
if gt_labels is None: | |
# Only rpn gives gt_labels as None | |
# Foreground is the first class since v2.5.0 | |
labels[pos_inds] = 0 | |
else: | |
labels[pos_inds] = gt_labels[ | |
sampling_result.pos_assigned_gt_inds] | |
if self.train_cfg.pos_weight <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg.pos_weight | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, | |
fill=self.num_classes) # fill bg label | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
neg_inds, sampling_result) | |
def get_targets(self, | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes_list, | |
img_metas, | |
gt_bboxes_ignore_list=None, | |
gt_labels_list=None, | |
label_channels=1, | |
unmap_outputs=True, | |
return_sampling_results=False): | |
"""Compute regression and classification targets for anchors in | |
multiple images. | |
Args: | |
anchor_list (list[list[Tensor]]): Multi level anchors of each | |
image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, 4). | |
valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
each image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, ) | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. | |
img_metas (list[dict]): Meta info of each image. | |
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be | |
ignored. | |
gt_labels_list (list[Tensor]): Ground truth labels of each box. | |
label_channels (int): Channel of label. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights_list (list[Tensor]): Label weights of each | |
level. | |
- bbox_targets_list (list[Tensor]): BBox targets of each level. | |
- bbox_weights_list (list[Tensor]): BBox weights of each level. | |
- num_total_pos (int): Number of positive samples in all | |
images. | |
- num_total_neg (int): Number of negative samples in all | |
images. | |
additional_returns: This function enables user-defined returns from | |
`self._get_targets_single`. These returns are currently refined | |
to properties at each feature map (i.e. having HxW dimension). | |
The results will be concatenated after the end | |
""" | |
num_imgs = len(img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors to a single tensor | |
concat_anchor_list = [] | |
concat_valid_flag_list = [] | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) | |
# compute targets for each image | |
if gt_bboxes_ignore_list is None: | |
gt_bboxes_ignore_list = [None for _ in range(num_imgs)] | |
if gt_labels_list is None: | |
gt_labels_list = [None for _ in range(num_imgs)] | |
results = multi_apply( | |
self._get_targets_single, | |
concat_anchor_list, | |
concat_valid_flag_list, | |
gt_bboxes_list, | |
gt_bboxes_ignore_list, | |
gt_labels_list, | |
img_metas, | |
label_channels=label_channels, | |
unmap_outputs=unmap_outputs) | |
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, | |
pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] | |
rest_results = list(results[7:]) # user-added return values | |
# no valid anchors | |
if any([labels is None for labels in all_labels]): | |
return None | |
# sampled anchors of all images | |
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) | |
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) | |
# split targets to a list w.r.t. multiple levels | |
labels_list = images_to_levels(all_labels, num_level_anchors) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors) | |
res = (labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, num_total_pos, num_total_neg) | |
if return_sampling_results: | |
res = res + (sampling_results_list, ) | |
for i, r in enumerate(rest_results): # user-added return values | |
rest_results[i] = images_to_levels(r, num_level_anchors) | |
return res + tuple(rest_results) | |
def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, | |
bbox_targets, bbox_weights, num_total_samples): | |
"""Compute loss of a single scale level. | |
Args: | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (N, num_total_anchors, 4). | |
bbox_weights (Tensor): BBox regression loss weights of each anchor | |
with shape (N, num_total_anchors, 4). | |
num_total_samples (int): If sampling, num total samples equal to | |
the number of total anchors; Otherwise, it is the number of | |
positive anchors. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
# classification loss | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
cls_score = cls_score.permute(0, 2, 3, | |
1).reshape(-1, self.cls_out_channels) | |
loss_cls = self.loss_cls( | |
cls_score, labels, label_weights, avg_factor=num_total_samples) | |
# regression loss | |
bbox_targets = bbox_targets.reshape(-1, 4) | |
bbox_weights = bbox_weights.reshape(-1, 4) | |
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
if self.reg_decoded_bbox: | |
# When the regression loss (e.g. `IouLoss`, `GIouLoss`) | |
# is applied directly on the decoded bounding boxes, it | |
# decodes the already encoded coordinates to absolute format. | |
anchors = anchors.reshape(-1, 4) | |
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) | |
loss_bbox = self.loss_bbox( | |
bbox_pred, | |
bbox_targets, | |
bbox_weights, | |
avg_factor=num_total_samples) | |
return loss_cls, loss_bbox | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. Default: None | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=label_channels) | |
if cls_reg_targets is None: | |
return None | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg) = cls_reg_targets | |
num_total_samples = ( | |
num_total_pos + num_total_neg if self.sampling else num_total_pos) | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors and flags to a single tensor | |
concat_anchor_list = [] | |
for i in range(len(anchor_list)): | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
all_anchor_list = images_to_levels(concat_anchor_list, | |
num_level_anchors) | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_single, | |
cls_scores, | |
bbox_preds, | |
all_anchor_list, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
num_total_samples=num_total_samples) | |
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) | |
def aug_test(self, feats, img_metas, rescale=False): | |
"""Test function with test time augmentation. | |
Args: | |
feats (list[Tensor]): the outer list indicates test-time | |
augmentations and inner Tensor should have a shape NxCxHxW, | |
which contains features for all images in the batch. | |
img_metas (list[list[dict]]): the outer list indicates test-time | |
augs (multiscale, flip, etc.) and the inner list indicates | |
images in a batch. each dict has image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is ``bboxes`` with shape (n, 5), where | |
5 represent (tl_x, tl_y, br_x, br_y, score). | |
The shape of the second tensor in the tuple is ``labels`` | |
with shape (n,), The length of list should always be 1. | |
""" | |
return self.aug_test_bboxes(feats, img_metas, rescale=rescale) | |