RockeyCoss
add code files”
51f6859
raw
history blame
21.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmcv.runner import force_fp32
from mmdet.core import (anchor_inside_flags, build_assigner, build_sampler,
images_to_levels, multi_apply, reduce_mean, unmap)
from ..builder import HEADS, build_loss
from .anchor_head import AnchorHead
@HEADS.register_module()
class ATSSHead(AnchorHead):
"""Bridging the Gap Between Anchor-based and Anchor-free Detection via
Adaptive Training Sample Selection.
ATSS head structure is similar with FCOS, however ATSS use anchor boxes
and assign label by Adaptive Training Sample Selection instead max-iou.
https://arxiv.org/abs/1912.02424
"""
def __init__(self,
num_classes,
in_channels,
pred_kernel_size=3,
stacked_convs=4,
conv_cfg=None,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
reg_decoded_bbox=True,
loss_centerness=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
init_cfg=dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='atss_cls',
std=0.01,
bias_prob=0.01)),
**kwargs):
self.pred_kernel_size = pred_kernel_size
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
super(ATSSHead, self).__init__(
num_classes,
in_channels,
reg_decoded_bbox=reg_decoded_bbox,
init_cfg=init_cfg,
**kwargs)
self.sampling = False
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
# SSD sampling=False so use PseudoSampler
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.loss_centerness = build_loss(loss_centerness)
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
pred_pad_size = self.pred_kernel_size // 2
self.atss_cls = nn.Conv2d(
self.feat_channels,
self.num_anchors * self.cls_out_channels,
self.pred_kernel_size,
padding=pred_pad_size)
self.atss_reg = nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=pred_pad_size)
self.atss_centerness = nn.Conv2d(
self.feat_channels,
self.num_base_priors * 1,
self.pred_kernel_size,
padding=pred_pad_size)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * 4.
"""
return multi_apply(self.forward_single, feats, self.scales)
def forward_single(self, x, scale):
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
Returns:
tuple:
cls_score (Tensor): Cls scores for a single scale level
the channels number is num_anchors * num_classes.
bbox_pred (Tensor): Box energies / deltas for a single scale
level, the channels number is num_anchors * 4.
centerness (Tensor): Centerness for a single scale level, the
channel number is (N, num_anchors * 1, H, W).
"""
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.atss_cls(cls_feat)
# we just follow atss, not apply exp in bbox_pred
bbox_pred = scale(self.atss_reg(reg_feat)).float()
centerness = self.atss_centerness(reg_feat)
return cls_score, bbox_pred, centerness
def loss_single(self, anchors, cls_score, bbox_pred, centerness, labels,
label_weights, bbox_targets, num_total_samples):
"""Compute loss of a single scale level.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
num_total_samples (int): Number os positive samples that is
reduced over all GPUs.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
anchors = anchors.reshape(-1, 4)
cls_score = cls_score.permute(0, 2, 3, 1).reshape(
-1, self.cls_out_channels).contiguous()
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
centerness = centerness.permute(0, 2, 3, 1).reshape(-1)
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
# classification loss
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=num_total_samples)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_centerness = centerness[pos_inds]
centerness_targets = self.centerness_target(
pos_anchors, pos_bbox_targets)
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchors, pos_bbox_pred)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_bbox_targets,
weight=centerness_targets,
avg_factor=1.0)
# centerness loss
loss_centerness = self.loss_centerness(
pos_centerness,
centerness_targets,
avg_factor=num_total_samples)
else:
loss_bbox = bbox_pred.sum() * 0
loss_centerness = centerness.sum() * 0
centerness_targets = bbox_targets.new_tensor(0.)
return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum()
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses'))
def loss(self,
cls_scores,
bbox_preds,
centernesses,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
centernesses (list[Tensor]): Centerness for each scale
level with shape (N, num_anchors * 1, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (list[Tensor] | None): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets
num_total_samples = reduce_mean(
torch.tensor(num_total_pos, dtype=torch.float,
device=device)).item()
num_total_samples = max(num_total_samples, 1.0)
losses_cls, losses_bbox, loss_centerness,\
bbox_avg_factor = multi_apply(
self.loss_single,
anchor_list,
cls_scores,
bbox_preds,
centernesses,
labels_list,
label_weights_list,
bbox_targets_list,
num_total_samples=num_total_samples)
bbox_avg_factor = sum(bbox_avg_factor)
bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item()
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
return dict(
loss_cls=losses_cls,
loss_bbox=losses_bbox,
loss_centerness=loss_centerness)
def centerness_target(self, anchors, gts):
# only calculate pos centerness targets, otherwise there may be nan
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
l_ = anchors_cx - gts[:, 0]
t_ = anchors_cy - gts[:, 1]
r_ = gts[:, 2] - anchors_cx
b_ = gts[:, 3] - anchors_cy
left_right = torch.stack([l_, r_], dim=1)
top_bottom = torch.stack([t_, b_], dim=1)
centerness = torch.sqrt(
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) *
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]))
assert not torch.isnan(centerness).any()
return centerness
def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):
"""Get targets for ATSS head.
This method is almost the same as `AnchorHead.get_targets()`. Besides
returning the targets as the parent method does, it also returns the
anchors as the first element of the returned tuple.
"""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
num_level_anchors_list = [num_level_anchors] * num_imgs
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list[i] = torch.cat(anchor_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply(
self._get_target_single,
anchor_list,
valid_flag_list,
num_level_anchors_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors)
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, num_total_pos,
num_total_neg)
def _get_target_single(self,
flat_anchors,
valid_flags,
num_level_anchors,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True):
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors ,4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
num_level_anchors Tensor): Number of anchors of each scale level.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
img_meta (dict): Meta info of the image.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: N is the number of total anchors in the image.
labels (Tensor): Labels of all anchors in the image with shape
(N,).
label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4)
pos_inds (Tensor): Indices of positive anchor with shape
(num_pos,).
neg_inds (Tensor): Indices of negative anchor with shape
(num_neg,).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg.allowed_border)
if not inside_flags.any():
return (None, ) * 7
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
num_level_anchors_inside = self.get_num_level_anchors_inside(
num_level_anchors, inside_flags)
assign_result = self.assigner.assign(anchors, num_level_anchors_inside,
gt_bboxes, gt_bboxes_ignore,
gt_labels)
sampling_result = self.sampler.sample(assign_result, anchors,
gt_bboxes)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
if self.reg_decoded_bbox:
pos_bbox_targets = sampling_result.pos_gt_bboxes
else:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
if gt_labels is None:
# Only rpn gives gt_labels as None
# Foreground is the first class since v2.5.0
labels[pos_inds] = 0
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds)
def get_num_level_anchors_inside(self, num_level_anchors, inside_flags):
split_inside_flags = torch.split(inside_flags, num_level_anchors)
num_level_anchors_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_anchors_inside