Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import bias_init_with_prob, normal_init | |
from mmcv.ops import batched_nms | |
from mmcv.runner import force_fp32 | |
from mmdet.core import multi_apply | |
from mmdet.models import HEADS, build_loss | |
from mmdet.models.utils import gaussian_radius, gen_gaussian_target | |
from ..utils.gaussian_target import (get_local_maximum, get_topk_from_heatmap, | |
transpose_and_gather_feat) | |
from .base_dense_head import BaseDenseHead | |
from .dense_test_mixins import BBoxTestMixin | |
class CenterNetHead(BaseDenseHead, BBoxTestMixin): | |
"""Objects as Points Head. CenterHead use center_point to indicate object's | |
position. Paper link <https://arxiv.org/abs/1904.07850> | |
Args: | |
in_channel (int): Number of channel in the input feature map. | |
feat_channel (int): Number of channel in the intermediate feature map. | |
num_classes (int): Number of categories excluding the background | |
category. | |
loss_center_heatmap (dict | None): Config of center heatmap loss. | |
Default: GaussianFocalLoss. | |
loss_wh (dict | None): Config of wh loss. Default: L1Loss. | |
loss_offset (dict | None): Config of offset loss. Default: L1Loss. | |
train_cfg (dict | None): Training config. Useless in CenterNet, | |
but we keep this variable for SingleStageDetector. Default: None. | |
test_cfg (dict | None): Testing config of CenterNet. Default: None. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
""" | |
def __init__(self, | |
in_channel, | |
feat_channel, | |
num_classes, | |
loss_center_heatmap=dict( | |
type='GaussianFocalLoss', loss_weight=1.0), | |
loss_wh=dict(type='L1Loss', loss_weight=0.1), | |
loss_offset=dict(type='L1Loss', loss_weight=1.0), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=None): | |
super(CenterNetHead, self).__init__(init_cfg) | |
self.num_classes = num_classes | |
self.heatmap_head = self._build_head(in_channel, feat_channel, | |
num_classes) | |
self.wh_head = self._build_head(in_channel, feat_channel, 2) | |
self.offset_head = self._build_head(in_channel, feat_channel, 2) | |
self.loss_center_heatmap = build_loss(loss_center_heatmap) | |
self.loss_wh = build_loss(loss_wh) | |
self.loss_offset = build_loss(loss_offset) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.fp16_enabled = False | |
def _build_head(self, in_channel, feat_channel, out_channel): | |
"""Build head for each branch.""" | |
layer = nn.Sequential( | |
nn.Conv2d(in_channel, feat_channel, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(feat_channel, out_channel, kernel_size=1)) | |
return layer | |
def init_weights(self): | |
"""Initialize weights of the head.""" | |
bias_init = bias_init_with_prob(0.1) | |
self.heatmap_head[-1].bias.data.fill_(bias_init) | |
for head in [self.wh_head, self.offset_head]: | |
for m in head.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001) | |
def forward(self, feats): | |
"""Forward features. Notice CenterNet head does not use FPN. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
center_heatmap_preds (List[Tensor]): center predict heatmaps for | |
all levels, the channels number is num_classes. | |
wh_preds (List[Tensor]): wh predicts for all levels, the channels | |
number is 2. | |
offset_preds (List[Tensor]): offset predicts for all levels, the | |
channels number is 2. | |
""" | |
return multi_apply(self.forward_single, feats) | |
def forward_single(self, feat): | |
"""Forward feature of a single level. | |
Args: | |
feat (Tensor): Feature of a single level. | |
Returns: | |
center_heatmap_pred (Tensor): center predict heatmaps, the | |
channels number is num_classes. | |
wh_pred (Tensor): wh predicts, the channels number is 2. | |
offset_pred (Tensor): offset predicts, the channels number is 2. | |
""" | |
center_heatmap_pred = self.heatmap_head(feat).sigmoid() | |
wh_pred = self.wh_head(feat) | |
offset_pred = self.offset_head(feat) | |
return center_heatmap_pred, wh_pred, offset_pred | |
def loss(self, | |
center_heatmap_preds, | |
wh_preds, | |
offset_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
center_heatmap_preds (list[Tensor]): center predict heatmaps for | |
all levels with shape (B, num_classes, H, W). | |
wh_preds (list[Tensor]): wh predicts for all levels with | |
shape (B, 2, H, W). | |
offset_preds (list[Tensor]): offset predicts for all levels | |
with shape (B, 2, H, W). | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box. | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. Default: None | |
Returns: | |
dict[str, Tensor]: which has components below: | |
- loss_center_heatmap (Tensor): loss of center heatmap. | |
- loss_wh (Tensor): loss of hw heatmap | |
- loss_offset (Tensor): loss of offset heatmap. | |
""" | |
assert len(center_heatmap_preds) == len(wh_preds) == len( | |
offset_preds) == 1 | |
center_heatmap_pred = center_heatmap_preds[0] | |
wh_pred = wh_preds[0] | |
offset_pred = offset_preds[0] | |
target_result, avg_factor = self.get_targets(gt_bboxes, gt_labels, | |
center_heatmap_pred.shape, | |
img_metas[0]['pad_shape']) | |
center_heatmap_target = target_result['center_heatmap_target'] | |
wh_target = target_result['wh_target'] | |
offset_target = target_result['offset_target'] | |
wh_offset_target_weight = target_result['wh_offset_target_weight'] | |
# Since the channel of wh_target and offset_target is 2, the avg_factor | |
# of loss_center_heatmap is always 1/2 of loss_wh and loss_offset. | |
loss_center_heatmap = self.loss_center_heatmap( | |
center_heatmap_pred, center_heatmap_target, avg_factor=avg_factor) | |
loss_wh = self.loss_wh( | |
wh_pred, | |
wh_target, | |
wh_offset_target_weight, | |
avg_factor=avg_factor * 2) | |
loss_offset = self.loss_offset( | |
offset_pred, | |
offset_target, | |
wh_offset_target_weight, | |
avg_factor=avg_factor * 2) | |
return dict( | |
loss_center_heatmap=loss_center_heatmap, | |
loss_wh=loss_wh, | |
loss_offset=loss_offset) | |
def get_targets(self, gt_bboxes, gt_labels, feat_shape, img_shape): | |
"""Compute regression and classification targets in multiple images. | |
Args: | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box. | |
feat_shape (list[int]): feature map shape with value [B, _, H, W] | |
img_shape (list[int]): image shape in [h, w] format. | |
Returns: | |
tuple[dict,float]: The float value is mean avg_factor, the dict has | |
components below: | |
- center_heatmap_target (Tensor): targets of center heatmap, \ | |
shape (B, num_classes, H, W). | |
- wh_target (Tensor): targets of wh predict, shape \ | |
(B, 2, H, W). | |
- offset_target (Tensor): targets of offset predict, shape \ | |
(B, 2, H, W). | |
- wh_offset_target_weight (Tensor): weights of wh and offset \ | |
predict, shape (B, 2, H, W). | |
""" | |
img_h, img_w = img_shape[:2] | |
bs, _, feat_h, feat_w = feat_shape | |
width_ratio = float(feat_w / img_w) | |
height_ratio = float(feat_h / img_h) | |
center_heatmap_target = gt_bboxes[-1].new_zeros( | |
[bs, self.num_classes, feat_h, feat_w]) | |
wh_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w]) | |
offset_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w]) | |
wh_offset_target_weight = gt_bboxes[-1].new_zeros( | |
[bs, 2, feat_h, feat_w]) | |
for batch_id in range(bs): | |
gt_bbox = gt_bboxes[batch_id] | |
gt_label = gt_labels[batch_id] | |
center_x = (gt_bbox[:, [0]] + gt_bbox[:, [2]]) * width_ratio / 2 | |
center_y = (gt_bbox[:, [1]] + gt_bbox[:, [3]]) * height_ratio / 2 | |
gt_centers = torch.cat((center_x, center_y), dim=1) | |
for j, ct in enumerate(gt_centers): | |
ctx_int, cty_int = ct.int() | |
ctx, cty = ct | |
scale_box_h = (gt_bbox[j][3] - gt_bbox[j][1]) * height_ratio | |
scale_box_w = (gt_bbox[j][2] - gt_bbox[j][0]) * width_ratio | |
radius = gaussian_radius([scale_box_h, scale_box_w], | |
min_overlap=0.3) | |
radius = max(0, int(radius)) | |
ind = gt_label[j] | |
gen_gaussian_target(center_heatmap_target[batch_id, ind], | |
[ctx_int, cty_int], radius) | |
wh_target[batch_id, 0, cty_int, ctx_int] = scale_box_w | |
wh_target[batch_id, 1, cty_int, ctx_int] = scale_box_h | |
offset_target[batch_id, 0, cty_int, ctx_int] = ctx - ctx_int | |
offset_target[batch_id, 1, cty_int, ctx_int] = cty - cty_int | |
wh_offset_target_weight[batch_id, :, cty_int, ctx_int] = 1 | |
avg_factor = max(1, center_heatmap_target.eq(1).sum()) | |
target_result = dict( | |
center_heatmap_target=center_heatmap_target, | |
wh_target=wh_target, | |
offset_target=offset_target, | |
wh_offset_target_weight=wh_offset_target_weight) | |
return target_result, avg_factor | |
def get_bboxes(self, | |
center_heatmap_preds, | |
wh_preds, | |
offset_preds, | |
img_metas, | |
rescale=True, | |
with_nms=False): | |
"""Transform network output for a batch into bbox predictions. | |
Args: | |
center_heatmap_preds (list[Tensor]): Center predict heatmaps for | |
all levels with shape (B, num_classes, H, W). | |
wh_preds (list[Tensor]): WH predicts for all levels with | |
shape (B, 2, H, W). | |
offset_preds (list[Tensor]): Offset predicts for all levels | |
with shape (B, 2, H, W). | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
rescale (bool): If True, return boxes in original image space. | |
Default: True. | |
with_nms (bool): If True, do nms before return boxes. | |
Default: False. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is an (n, 5) tensor, where 5 represent | |
(tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. | |
The shape of the second tensor in the tuple is (n,), and | |
each element represents the class label of the corresponding | |
box. | |
""" | |
assert len(center_heatmap_preds) == len(wh_preds) == len( | |
offset_preds) == 1 | |
result_list = [] | |
for img_id in range(len(img_metas)): | |
result_list.append( | |
self._get_bboxes_single( | |
center_heatmap_preds[0][img_id:img_id + 1, ...], | |
wh_preds[0][img_id:img_id + 1, ...], | |
offset_preds[0][img_id:img_id + 1, ...], | |
img_metas[img_id], | |
rescale=rescale, | |
with_nms=with_nms)) | |
return result_list | |
def _get_bboxes_single(self, | |
center_heatmap_pred, | |
wh_pred, | |
offset_pred, | |
img_meta, | |
rescale=False, | |
with_nms=True): | |
"""Transform outputs of a single image into bbox results. | |
Args: | |
center_heatmap_pred (Tensor): Center heatmap for current level with | |
shape (1, num_classes, H, W). | |
wh_pred (Tensor): WH heatmap for current level with shape | |
(1, num_classes, H, W). | |
offset_pred (Tensor): Offset for current level with shape | |
(1, corner_offset_channels, H, W). | |
img_meta (dict): Meta information of current image, e.g., | |
image size, scaling factor, etc. | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default: True. | |
Returns: | |
tuple[Tensor, Tensor]: The first item is an (n, 5) tensor, where | |
5 represent (tl_x, tl_y, br_x, br_y, score) and the score | |
between 0 and 1. The shape of the second tensor in the tuple | |
is (n,), and each element represents the class label of the | |
corresponding box. | |
""" | |
batch_det_bboxes, batch_labels = self.decode_heatmap( | |
center_heatmap_pred, | |
wh_pred, | |
offset_pred, | |
img_meta['batch_input_shape'], | |
k=self.test_cfg.topk, | |
kernel=self.test_cfg.local_maximum_kernel) | |
det_bboxes = batch_det_bboxes.view([-1, 5]) | |
det_labels = batch_labels.view(-1) | |
batch_border = det_bboxes.new_tensor(img_meta['border'])[..., | |
[2, 0, 2, 0]] | |
det_bboxes[..., :4] -= batch_border | |
if rescale: | |
det_bboxes[..., :4] /= det_bboxes.new_tensor( | |
img_meta['scale_factor']) | |
if with_nms: | |
det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels, | |
self.test_cfg) | |
return det_bboxes, det_labels | |
def decode_heatmap(self, | |
center_heatmap_pred, | |
wh_pred, | |
offset_pred, | |
img_shape, | |
k=100, | |
kernel=3): | |
"""Transform outputs into detections raw bbox prediction. | |
Args: | |
center_heatmap_pred (Tensor): center predict heatmap, | |
shape (B, num_classes, H, W). | |
wh_pred (Tensor): wh predict, shape (B, 2, H, W). | |
offset_pred (Tensor): offset predict, shape (B, 2, H, W). | |
img_shape (list[int]): image shape in [h, w] format. | |
k (int): Get top k center keypoints from heatmap. Default 100. | |
kernel (int): Max pooling kernel for extract local maximum pixels. | |
Default 3. | |
Returns: | |
tuple[torch.Tensor]: Decoded output of CenterNetHead, containing | |
the following Tensors: | |
- batch_bboxes (Tensor): Coords of each box with shape (B, k, 5) | |
- batch_topk_labels (Tensor): Categories of each box with \ | |
shape (B, k) | |
""" | |
height, width = center_heatmap_pred.shape[2:] | |
inp_h, inp_w = img_shape | |
center_heatmap_pred = get_local_maximum( | |
center_heatmap_pred, kernel=kernel) | |
*batch_dets, topk_ys, topk_xs = get_topk_from_heatmap( | |
center_heatmap_pred, k=k) | |
batch_scores, batch_index, batch_topk_labels = batch_dets | |
wh = transpose_and_gather_feat(wh_pred, batch_index) | |
offset = transpose_and_gather_feat(offset_pred, batch_index) | |
topk_xs = topk_xs + offset[..., 0] | |
topk_ys = topk_ys + offset[..., 1] | |
tl_x = (topk_xs - wh[..., 0] / 2) * (inp_w / width) | |
tl_y = (topk_ys - wh[..., 1] / 2) * (inp_h / height) | |
br_x = (topk_xs + wh[..., 0] / 2) * (inp_w / width) | |
br_y = (topk_ys + wh[..., 1] / 2) * (inp_h / height) | |
batch_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=2) | |
batch_bboxes = torch.cat((batch_bboxes, batch_scores[..., None]), | |
dim=-1) | |
return batch_bboxes, batch_topk_labels | |
def _bboxes_nms(self, bboxes, labels, cfg): | |
if labels.numel() > 0: | |
max_num = cfg.max_per_img | |
bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, | |
-1].contiguous(), | |
labels, cfg.nms) | |
if max_num > 0: | |
bboxes = bboxes[:max_num] | |
labels = labels[keep][:max_num] | |
return bboxes, labels | |