RockeyCoss
add code files”
51f6859
raw
history blame
4.63 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.runner import BaseModule
from mmdet.models.builder import HEADS
from ...core import bbox_cxcywh_to_xyxy
@HEADS.register_module()
class EmbeddingRPNHead(BaseModule):
"""RPNHead in the `Sparse R-CNN <https://arxiv.org/abs/2011.12450>`_ .
Unlike traditional RPNHead, this module does not need FPN input, but just
decode `init_proposal_bboxes` and expand the first dimension of
`init_proposal_bboxes` and `init_proposal_features` to the batch_size.
Args:
num_proposals (int): Number of init_proposals. Default 100.
proposal_feature_channel (int): Channel number of
init_proposal_feature. Defaults to 256.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
num_proposals=100,
proposal_feature_channel=256,
init_cfg=None,
**kwargs):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super(EmbeddingRPNHead, self).__init__(init_cfg)
self.num_proposals = num_proposals
self.proposal_feature_channel = proposal_feature_channel
self._init_layers()
def _init_layers(self):
"""Initialize a sparse set of proposal boxes and proposal features."""
self.init_proposal_bboxes = nn.Embedding(self.num_proposals, 4)
self.init_proposal_features = nn.Embedding(
self.num_proposals, self.proposal_feature_channel)
def init_weights(self):
"""Initialize the init_proposal_bboxes as normalized.
[c_x, c_y, w, h], and we initialize it to the size of the entire
image.
"""
super(EmbeddingRPNHead, self).init_weights()
nn.init.constant_(self.init_proposal_bboxes.weight[:, :2], 0.5)
nn.init.constant_(self.init_proposal_bboxes.weight[:, 2:], 1)
def _decode_init_proposals(self, imgs, img_metas):
"""Decode init_proposal_bboxes according to the size of images and
expand dimension of init_proposal_features to batch_size.
Args:
imgs (list[Tensor]): List of FPN features.
img_metas (list[dict]): List of meta-information of
images. Need the img_shape to decode the init_proposals.
Returns:
Tuple(Tensor):
- proposals (Tensor): Decoded proposal bboxes,
has shape (batch_size, num_proposals, 4).
- init_proposal_features (Tensor): Expanded proposal
features, has shape
(batch_size, num_proposals, proposal_feature_channel).
- imgs_whwh (Tensor): Tensor with shape
(batch_size, 4), the dimension means
[img_width, img_height, img_width, img_height].
"""
proposals = self.init_proposal_bboxes.weight.clone()
proposals = bbox_cxcywh_to_xyxy(proposals)
num_imgs = len(imgs[0])
imgs_whwh = []
for meta in img_metas:
h, w, _ = meta['img_shape']
imgs_whwh.append(imgs[0].new_tensor([[w, h, w, h]]))
imgs_whwh = torch.cat(imgs_whwh, dim=0)
imgs_whwh = imgs_whwh[:, None, :]
# imgs_whwh has shape (batch_size, 1, 4)
# The shape of proposals change from (num_proposals, 4)
# to (batch_size ,num_proposals, 4)
proposals = proposals * imgs_whwh
init_proposal_features = self.init_proposal_features.weight.clone()
init_proposal_features = init_proposal_features[None].expand(
num_imgs, *init_proposal_features.size())
return proposals, init_proposal_features, imgs_whwh
def forward_dummy(self, img, img_metas):
"""Dummy forward function.
Used in flops calculation.
"""
return self._decode_init_proposals(img, img_metas)
def forward_train(self, img, img_metas):
"""Forward function in training stage."""
return self._decode_init_proposals(img, img_metas)
def simple_test_rpn(self, img, img_metas):
"""Forward function in testing stage."""
return self._decode_init_proposals(img, img_metas)
def simple_test(self, img, img_metas):
"""Forward function in testing stage."""
raise NotImplementedError
def aug_test_rpn(self, feats, img_metas):
raise NotImplementedError(
'EmbeddingRPNHead does not support test-time augmentation')