Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import Scale | |
from mmcv.runner import force_fp32 | |
from mmdet.core import multi_apply, reduce_mean | |
from ..builder import HEADS, build_loss | |
from .anchor_free_head import AnchorFreeHead | |
INF = 1e8 | |
class FCOSHead(AnchorFreeHead): | |
"""Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_. | |
The FCOS head does not use anchor boxes. Instead bounding boxes are | |
predicted at each pixel and a centerness measure is used to suppress | |
low-quality predictions. | |
Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training | |
tricks used in official repo, which will bring remarkable mAP gains | |
of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for | |
more detail. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
strides (list[int] | list[tuple[int, int]]): Strides of points | |
in multiple feature levels. Default: (4, 8, 16, 32, 64). | |
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple | |
level points. | |
center_sampling (bool): If true, use center sampling. Default: False. | |
center_sample_radius (float): Radius of center sampling. Default: 1.5. | |
norm_on_bbox (bool): If true, normalize the regression targets | |
with FPN strides. Default: False. | |
centerness_on_reg (bool): If true, position centerness on the | |
regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. | |
Default: False. | |
conv_bias (bool | str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise | |
False. Default: "auto". | |
loss_cls (dict): Config of classification loss. | |
loss_bbox (dict): Config of localization loss. | |
loss_centerness (dict): Config of centerness loss. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Example: | |
>>> self = FCOSHead(11, 7) | |
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
>>> cls_score, bbox_pred, centerness = self.forward(feats) | |
>>> assert len(cls_score) == len(self.scales) | |
""" # noqa: E501 | |
def __init__(self, | |
num_classes, | |
in_channels, | |
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), | |
(512, INF)), | |
center_sampling=False, | |
center_sample_radius=1.5, | |
norm_on_bbox=False, | |
centerness_on_reg=False, | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox=dict(type='IoULoss', loss_weight=1.0), | |
loss_centerness=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0), | |
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), | |
init_cfg=dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', | |
name='conv_cls', | |
std=0.01, | |
bias_prob=0.01)), | |
**kwargs): | |
self.regress_ranges = regress_ranges | |
self.center_sampling = center_sampling | |
self.center_sample_radius = center_sample_radius | |
self.norm_on_bbox = norm_on_bbox | |
self.centerness_on_reg = centerness_on_reg | |
super().__init__( | |
num_classes, | |
in_channels, | |
loss_cls=loss_cls, | |
loss_bbox=loss_bbox, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg, | |
**kwargs) | |
self.loss_centerness = build_loss(loss_centerness) | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
super()._init_layers() | |
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) | |
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) | |
def forward(self, feats): | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: | |
cls_scores (list[Tensor]): Box scores for each scale level, \ | |
each is a 4D-tensor, the channel number is \ | |
num_points * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for each \ | |
scale level, each is a 4D-tensor, the channel number is \ | |
num_points * 4. | |
centernesses (list[Tensor]): centerness for each scale level, \ | |
each is a 4D-tensor, the channel number is num_points * 1. | |
""" | |
return multi_apply(self.forward_single, feats, self.scales, | |
self.strides) | |
def forward_single(self, x, scale, stride): | |
"""Forward features of a single scale level. | |
Args: | |
x (Tensor): FPN feature maps of the specified stride. | |
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
stride (int): The corresponding stride for feature maps, only | |
used to normalize the bbox prediction when self.norm_on_bbox | |
is True. | |
Returns: | |
tuple: scores for each class, bbox predictions and centerness \ | |
predictions of input feature maps. | |
""" | |
cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) | |
if self.centerness_on_reg: | |
centerness = self.conv_centerness(reg_feat) | |
else: | |
centerness = self.conv_centerness(cls_feat) | |
# scale the bbox_pred of different level | |
# float to avoid overflow when enabling FP16 | |
bbox_pred = scale(bbox_pred).float() | |
if self.norm_on_bbox: | |
# bbox_pred needed for gradient computation has been modified | |
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace | |
# F.relu(bbox_pred) with bbox_pred.clamp(min=0) | |
bbox_pred = bbox_pred.clamp(min=0) | |
if not self.training: | |
bbox_pred *= stride | |
else: | |
bbox_pred = bbox_pred.exp() | |
return cls_score, bbox_pred, centerness | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
centernesses, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute loss of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level, | |
each is a 4D-tensor, the channel number is | |
num_points * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_points * 4. | |
centernesses (list[Tensor]): centerness for each scale level, each | |
is a 4D-tensor, the channel number is num_points * 1. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert len(cls_scores) == len(bbox_preds) == len(centernesses) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
all_level_points = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=bbox_preds[0].dtype, | |
device=bbox_preds[0].device) | |
labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes, | |
gt_labels) | |
num_imgs = cls_scores[0].size(0) | |
# flatten cls_scores, bbox_preds and centerness | |
flatten_cls_scores = [ | |
cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) | |
for cls_score in cls_scores | |
] | |
flatten_bbox_preds = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
for bbox_pred in bbox_preds | |
] | |
flatten_centerness = [ | |
centerness.permute(0, 2, 3, 1).reshape(-1) | |
for centerness in centernesses | |
] | |
flatten_cls_scores = torch.cat(flatten_cls_scores) | |
flatten_bbox_preds = torch.cat(flatten_bbox_preds) | |
flatten_centerness = torch.cat(flatten_centerness) | |
flatten_labels = torch.cat(labels) | |
flatten_bbox_targets = torch.cat(bbox_targets) | |
# repeat points to align with bbox_preds | |
flatten_points = torch.cat( | |
[points.repeat(num_imgs, 1) for points in all_level_points]) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = ((flatten_labels >= 0) | |
& (flatten_labels < bg_class_ind)).nonzero().reshape(-1) | |
num_pos = torch.tensor( | |
len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) | |
num_pos = max(reduce_mean(num_pos), 1.0) | |
loss_cls = self.loss_cls( | |
flatten_cls_scores, flatten_labels, avg_factor=num_pos) | |
pos_bbox_preds = flatten_bbox_preds[pos_inds] | |
pos_centerness = flatten_centerness[pos_inds] | |
pos_bbox_targets = flatten_bbox_targets[pos_inds] | |
pos_centerness_targets = self.centerness_target(pos_bbox_targets) | |
# centerness weighted iou loss | |
centerness_denorm = max( | |
reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) | |
if len(pos_inds) > 0: | |
pos_points = flatten_points[pos_inds] | |
pos_decoded_bbox_preds = self.bbox_coder.decode( | |
pos_points, pos_bbox_preds) | |
pos_decoded_target_preds = self.bbox_coder.decode( | |
pos_points, pos_bbox_targets) | |
loss_bbox = self.loss_bbox( | |
pos_decoded_bbox_preds, | |
pos_decoded_target_preds, | |
weight=pos_centerness_targets, | |
avg_factor=centerness_denorm) | |
loss_centerness = self.loss_centerness( | |
pos_centerness, pos_centerness_targets, avg_factor=num_pos) | |
else: | |
loss_bbox = pos_bbox_preds.sum() | |
loss_centerness = pos_centerness.sum() | |
return dict( | |
loss_cls=loss_cls, | |
loss_bbox=loss_bbox, | |
loss_centerness=loss_centerness) | |
def get_targets(self, points, gt_bboxes_list, gt_labels_list): | |
"""Compute regression, classification and centerness targets for points | |
in multiple images. | |
Args: | |
points (list[Tensor]): Points of each fpn level, each has shape | |
(num_points, 2). | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, | |
each has shape (num_gt, 4). | |
gt_labels_list (list[Tensor]): Ground truth labels of each box, | |
each has shape (num_gt,). | |
Returns: | |
tuple: | |
concat_lvl_labels (list[Tensor]): Labels of each level. \ | |
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ | |
level. | |
""" | |
assert len(points) == len(self.regress_ranges) | |
num_levels = len(points) | |
# expand regress ranges to align with points | |
expanded_regress_ranges = [ | |
points[i].new_tensor(self.regress_ranges[i])[None].expand_as( | |
points[i]) for i in range(num_levels) | |
] | |
# concat all levels points and regress ranges | |
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) | |
concat_points = torch.cat(points, dim=0) | |
# the number of points per img, per lvl | |
num_points = [center.size(0) for center in points] | |
# get labels and bbox_targets of each image | |
labels_list, bbox_targets_list = multi_apply( | |
self._get_target_single, | |
gt_bboxes_list, | |
gt_labels_list, | |
points=concat_points, | |
regress_ranges=concat_regress_ranges, | |
num_points_per_lvl=num_points) | |
# split to per img, per level | |
labels_list = [labels.split(num_points, 0) for labels in labels_list] | |
bbox_targets_list = [ | |
bbox_targets.split(num_points, 0) | |
for bbox_targets in bbox_targets_list | |
] | |
# concat per level image | |
concat_lvl_labels = [] | |
concat_lvl_bbox_targets = [] | |
for i in range(num_levels): | |
concat_lvl_labels.append( | |
torch.cat([labels[i] for labels in labels_list])) | |
bbox_targets = torch.cat( | |
[bbox_targets[i] for bbox_targets in bbox_targets_list]) | |
if self.norm_on_bbox: | |
bbox_targets = bbox_targets / self.strides[i] | |
concat_lvl_bbox_targets.append(bbox_targets) | |
return concat_lvl_labels, concat_lvl_bbox_targets | |
def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, | |
num_points_per_lvl): | |
"""Compute regression and classification targets for a single image.""" | |
num_points = points.size(0) | |
num_gts = gt_labels.size(0) | |
if num_gts == 0: | |
return gt_labels.new_full((num_points,), self.num_classes), \ | |
gt_bboxes.new_zeros((num_points, 4)) | |
areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( | |
gt_bboxes[:, 3] - gt_bboxes[:, 1]) | |
# TODO: figure out why these two are different | |
# areas = areas[None].expand(num_points, num_gts) | |
areas = areas[None].repeat(num_points, 1) | |
regress_ranges = regress_ranges[:, None, :].expand( | |
num_points, num_gts, 2) | |
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) | |
xs, ys = points[:, 0], points[:, 1] | |
xs = xs[:, None].expand(num_points, num_gts) | |
ys = ys[:, None].expand(num_points, num_gts) | |
left = xs - gt_bboxes[..., 0] | |
right = gt_bboxes[..., 2] - xs | |
top = ys - gt_bboxes[..., 1] | |
bottom = gt_bboxes[..., 3] - ys | |
bbox_targets = torch.stack((left, top, right, bottom), -1) | |
if self.center_sampling: | |
# condition1: inside a `center bbox` | |
radius = self.center_sample_radius | |
center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2 | |
center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2 | |
center_gts = torch.zeros_like(gt_bboxes) | |
stride = center_xs.new_zeros(center_xs.shape) | |
# project the points on current lvl back to the `original` sizes | |
lvl_begin = 0 | |
for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): | |
lvl_end = lvl_begin + num_points_lvl | |
stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius | |
lvl_begin = lvl_end | |
x_mins = center_xs - stride | |
y_mins = center_ys - stride | |
x_maxs = center_xs + stride | |
y_maxs = center_ys + stride | |
center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0], | |
x_mins, gt_bboxes[..., 0]) | |
center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1], | |
y_mins, gt_bboxes[..., 1]) | |
center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2], | |
gt_bboxes[..., 2], x_maxs) | |
center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3], | |
gt_bboxes[..., 3], y_maxs) | |
cb_dist_left = xs - center_gts[..., 0] | |
cb_dist_right = center_gts[..., 2] - xs | |
cb_dist_top = ys - center_gts[..., 1] | |
cb_dist_bottom = center_gts[..., 3] - ys | |
center_bbox = torch.stack( | |
(cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) | |
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 | |
else: | |
# condition1: inside a gt bbox | |
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 | |
# condition2: limit the regression range for each location | |
max_regress_distance = bbox_targets.max(-1)[0] | |
inside_regress_range = ( | |
(max_regress_distance >= regress_ranges[..., 0]) | |
& (max_regress_distance <= regress_ranges[..., 1])) | |
# if there are still more than one objects for a location, | |
# we choose the one with minimal area | |
areas[inside_gt_bbox_mask == 0] = INF | |
areas[inside_regress_range == 0] = INF | |
min_area, min_area_inds = areas.min(dim=1) | |
labels = gt_labels[min_area_inds] | |
labels[min_area == INF] = self.num_classes # set as BG | |
bbox_targets = bbox_targets[range(num_points), min_area_inds] | |
return labels, bbox_targets | |
def centerness_target(self, pos_bbox_targets): | |
"""Compute centerness targets. | |
Args: | |
pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape | |
(num_pos, 4) | |
Returns: | |
Tensor: Centerness target. | |
""" | |
# only calculate pos centerness targets, otherwise there may be nan | |
left_right = pos_bbox_targets[:, [0, 2]] | |
top_bottom = pos_bbox_targets[:, [1, 3]] | |
if len(left_right) == 0: | |
centerness_targets = left_right[..., 0] | |
else: | |
centerness_targets = ( | |
left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( | |
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) | |
return torch.sqrt(centerness_targets) | |
def _get_points_single(self, | |
featmap_size, | |
stride, | |
dtype, | |
device, | |
flatten=False): | |
"""Get points according to feature map size. | |
This function will be deprecated soon. | |
""" | |
warnings.warn( | |
'`_get_points_single` in `FCOSHead` will be ' | |
'deprecated soon, we support a multi level point generator now' | |
'you can get points of a single level feature map ' | |
'with `self.prior_generator.single_level_grid_priors` ') | |
y, x = super()._get_points_single(featmap_size, stride, dtype, device) | |
points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), | |
dim=-1) + stride // 2 | |
return points | |