RockeyCoss
add code files”
51f6859
raw
history blame
3.93 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import MaskedConv2d
from ..builder import HEADS
from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead
@HEADS.register_module()
class GARetinaHead(GuidedAnchorHead):
"""Guided-Anchor-based RetinaNet head."""
def __init__(self,
num_classes,
in_channels,
stacked_convs=4,
conv_cfg=None,
norm_cfg=None,
init_cfg=None,
**kwargs):
if init_cfg is None:
init_cfg = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=[
dict(
type='Normal',
name='conv_loc',
std=0.01,
bias_prob=0.01),
dict(
type='Normal',
name='retina_cls',
std=0.01,
bias_prob=0.01)
])
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
super(GARetinaHead, self).__init__(
num_classes, in_channels, init_cfg=init_cfg, **kwargs)
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deform_groups=self.deform_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deform_groups=self.deform_groups)
self.retina_cls = MaskedConv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(
self.feat_channels, self.num_base_priors * 4, 3, padding=1)
def forward_single(self, x):
"""Forward feature map of a single scale level."""
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
loc_pred = self.conv_loc(cls_feat)
shape_pred = self.conv_shape(reg_feat)
cls_feat = self.feature_adaption_cls(cls_feat, shape_pred)
reg_feat = self.feature_adaption_reg(reg_feat, shape_pred)
if not self.training:
mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr
else:
mask = None
cls_score = self.retina_cls(cls_feat, mask)
bbox_pred = self.retina_reg(reg_feat, mask)
return cls_score, bbox_pred, shape_pred, loc_pred