Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, Scale | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (anchor_inside_flags, bbox_overlaps, build_assigner, | |
build_sampler, images_to_levels, multi_apply, | |
reduce_mean, unmap) | |
from mmdet.core.utils import filter_scores_and_topk | |
from ..builder import HEADS, build_loss | |
from .anchor_head import AnchorHead | |
class Integral(nn.Module): | |
"""A fixed layer for calculating integral result from distribution. | |
This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, | |
P(y_i) denotes the softmax vector that represents the discrete distribution | |
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} | |
Args: | |
reg_max (int): The maximal value of the discrete set. Default: 16. You | |
may want to reset it according to your new dataset or related | |
settings. | |
""" | |
def __init__(self, reg_max=16): | |
super(Integral, self).__init__() | |
self.reg_max = reg_max | |
self.register_buffer('project', | |
torch.linspace(0, self.reg_max, self.reg_max + 1)) | |
def forward(self, x): | |
"""Forward feature from the regression head to get integral result of | |
bounding box location. | |
Args: | |
x (Tensor): Features of the regression head, shape (N, 4*(n+1)), | |
n is self.reg_max. | |
Returns: | |
x (Tensor): Integral result of box locations, i.e., distance | |
offsets from the box center in four directions, shape (N, 4). | |
""" | |
x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) | |
x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) | |
return x | |
class GFLHead(AnchorHead): | |
"""Generalized Focal Loss: Learning Qualified and Distributed Bounding | |
Boxes for Dense Object Detection. | |
GFL head structure is similar with ATSS, however GFL uses | |
1) joint representation for classification and localization quality, and | |
2) flexible General distribution for bounding box locations, | |
which are supervised by | |
Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively | |
https://arxiv.org/abs/2006.04388 | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
stacked_convs (int): Number of conv layers in cls and reg tower. | |
Default: 4. | |
conv_cfg (dict): dictionary to construct and config conv layer. | |
Default: None. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='GN', num_groups=32, requires_grad=True). | |
loss_qfl (dict): Config of Quality Focal Loss (QFL). | |
bbox_coder (dict): Config of bbox coder. Defaults | |
'DistancePointBBoxCoder'. | |
reg_max (int): Max value of integral set :math: `{0, ..., reg_max}` | |
in QFL setting. Default: 16. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Example: | |
>>> self = GFLHead(11, 7) | |
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
>>> cls_quality_score, bbox_pred = self.forward(feats) | |
>>> assert len(cls_quality_score) == len(self.scales) | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels, | |
stacked_convs=4, | |
conv_cfg=None, | |
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), | |
loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), | |
bbox_coder=dict(type='DistancePointBBoxCoder'), | |
reg_max=16, | |
init_cfg=dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', | |
name='gfl_cls', | |
std=0.01, | |
bias_prob=0.01)), | |
**kwargs): | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.reg_max = reg_max | |
super(GFLHead, self).__init__( | |
num_classes, | |
in_channels, | |
bbox_coder=bbox_coder, | |
init_cfg=init_cfg, | |
**kwargs) | |
self.sampling = False | |
if self.train_cfg: | |
self.assigner = build_assigner(self.train_cfg.assigner) | |
# SSD sampling=False so use PseudoSampler | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.integral = Integral(self.reg_max) | |
self.loss_dfl = build_loss(loss_dfl) | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
assert self.num_anchors == 1, 'anchor free version' | |
self.gfl_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
self.gfl_reg = nn.Conv2d( | |
self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) | |
self.scales = nn.ModuleList( | |
[Scale(1.0) for _ in self.prior_generator.strides]) | |
def forward(self, feats): | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
cls_scores (list[Tensor]): Classification and quality (IoU) | |
joint scores for all scale levels, each is a 4D-tensor, | |
the channel number is num_classes. | |
bbox_preds (list[Tensor]): Box distribution logits for all | |
scale levels, each is a 4D-tensor, the channel number is | |
4*(n+1), n is max value of integral set. | |
""" | |
return multi_apply(self.forward_single, feats, self.scales) | |
def forward_single(self, x, scale): | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls and quality joint scores for a single | |
scale level the channel number is num_classes. | |
bbox_pred (Tensor): Box distribution logits for a single scale | |
level, the channel number is 4*(n+1), n is max value of | |
integral set. | |
""" | |
cls_feat = x | |
reg_feat = x | |
for cls_conv in self.cls_convs: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs: | |
reg_feat = reg_conv(reg_feat) | |
cls_score = self.gfl_cls(cls_feat) | |
bbox_pred = scale(self.gfl_reg(reg_feat)).float() | |
return cls_score, bbox_pred | |
def anchor_center(self, anchors): | |
"""Get anchor centers from anchors. | |
Args: | |
anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. | |
Returns: | |
Tensor: Anchor centers with shape (N, 2), "xy" format. | |
""" | |
anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 | |
anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 | |
return torch.stack([anchors_cx, anchors_cy], dim=-1) | |
def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, | |
bbox_targets, stride, num_total_samples): | |
"""Compute loss of a single scale level. | |
Args: | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
cls_score (Tensor): Cls and quality joint scores for each scale | |
level has shape (N, num_classes, H, W). | |
bbox_pred (Tensor): Box distribution logits for each scale | |
level with shape (N, 4*(n+1), H, W), n is max value of integral | |
set. | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (N, num_total_anchors, 4). | |
stride (tuple): Stride in this scale level. | |
num_total_samples (int): Number of positive samples that is | |
reduced over all GPUs. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert stride[0] == stride[1], 'h stride is not equal to w stride!' | |
anchors = anchors.reshape(-1, 4) | |
cls_score = cls_score.permute(0, 2, 3, | |
1).reshape(-1, self.cls_out_channels) | |
bbox_pred = bbox_pred.permute(0, 2, 3, | |
1).reshape(-1, 4 * (self.reg_max + 1)) | |
bbox_targets = bbox_targets.reshape(-1, 4) | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = ((labels >= 0) | |
& (labels < bg_class_ind)).nonzero().squeeze(1) | |
score = label_weights.new_zeros(labels.shape) | |
if len(pos_inds) > 0: | |
pos_bbox_targets = bbox_targets[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_anchors = anchors[pos_inds] | |
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] | |
weight_targets = cls_score.detach().sigmoid() | |
weight_targets = weight_targets.max(dim=1)[0][pos_inds] | |
pos_bbox_pred_corners = self.integral(pos_bbox_pred) | |
pos_decode_bbox_pred = self.bbox_coder.decode( | |
pos_anchor_centers, pos_bbox_pred_corners) | |
pos_decode_bbox_targets = pos_bbox_targets / stride[0] | |
score[pos_inds] = bbox_overlaps( | |
pos_decode_bbox_pred.detach(), | |
pos_decode_bbox_targets, | |
is_aligned=True) | |
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) | |
target_corners = self.bbox_coder.encode(pos_anchor_centers, | |
pos_decode_bbox_targets, | |
self.reg_max).reshape(-1) | |
# regression loss | |
loss_bbox = self.loss_bbox( | |
pos_decode_bbox_pred, | |
pos_decode_bbox_targets, | |
weight=weight_targets, | |
avg_factor=1.0) | |
# dfl loss | |
loss_dfl = self.loss_dfl( | |
pred_corners, | |
target_corners, | |
weight=weight_targets[:, None].expand(-1, 4).reshape(-1), | |
avg_factor=4.0) | |
else: | |
loss_bbox = bbox_pred.sum() * 0 | |
loss_dfl = bbox_pred.sum() * 0 | |
weight_targets = bbox_pred.new_tensor(0) | |
# cls (qfl) loss | |
loss_cls = self.loss_cls( | |
cls_score, (labels, score), | |
weight=label_weights, | |
avg_factor=num_total_samples) | |
return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Cls and quality scores for each scale | |
level has shape (N, num_classes, H, W). | |
bbox_preds (list[Tensor]): Box distribution logits for each scale | |
level with shape (N, 4*(n+1), H, W), n is max value of integral | |
set. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (list[Tensor] | None): specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=label_channels) | |
if cls_reg_targets is None: | |
return None | |
(anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets | |
num_total_samples = reduce_mean( | |
torch.tensor(num_total_pos, dtype=torch.float, | |
device=device)).item() | |
num_total_samples = max(num_total_samples, 1.0) | |
losses_cls, losses_bbox, losses_dfl,\ | |
avg_factor = multi_apply( | |
self.loss_single, | |
anchor_list, | |
cls_scores, | |
bbox_preds, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
self.prior_generator.strides, | |
num_total_samples=num_total_samples) | |
avg_factor = sum(avg_factor) | |
avg_factor = reduce_mean(avg_factor).clamp_(min=1).item() | |
losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) | |
losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) | |
return dict( | |
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) | |
def _get_bboxes_single(self, | |
cls_score_list, | |
bbox_pred_list, | |
score_factor_list, | |
mlvl_priors, | |
img_meta, | |
cfg, | |
rescale=False, | |
with_nms=True, | |
**kwargs): | |
"""Transform outputs of a single image into bbox predictions. | |
Args: | |
cls_score_list (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
score_factor_list (list[Tensor]): Score factor from all scale | |
levels of a single image. GFL head does not need this value. | |
mlvl_priors (list[Tensor]): Each element in the list is | |
the priors of a single level in feature pyramid, has shape | |
(num_priors, 4). | |
img_meta (dict): Image meta info. | |
cfg (mmcv.Config): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default: True. | |
Returns: | |
tuple[Tensor]: Results of detected bboxes and labels. If with_nms | |
is False and mlvl_score_factor is None, return mlvl_bboxes and | |
mlvl_scores, else return mlvl_bboxes, mlvl_scores and | |
mlvl_score_factor. Usually with_nms is False is used for aug | |
test. If with_nms is True, then return the following format | |
- det_bboxes (Tensor): Predicted bboxes with shape \ | |
[num_bboxes, 5], where the first 4 columns are bounding \ | |
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ | |
column are scores between 0 and 1. | |
- det_labels (Tensor): Predicted labels of the corresponding \ | |
box with shape [num_bboxes]. | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
img_shape = img_meta['img_shape'] | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_labels = [] | |
for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate( | |
zip(cls_score_list, bbox_pred_list, | |
self.prior_generator.strides, mlvl_priors)): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
assert stride[0] == stride[1] | |
bbox_pred = bbox_pred.permute(1, 2, 0) | |
bbox_pred = self.integral(bbox_pred) * stride[0] | |
scores = cls_score.permute(1, 2, 0).reshape( | |
-1, self.cls_out_channels).sigmoid() | |
# After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
# this operation keeps fewer bboxes under the same `nms_pre`. | |
# There is no difference in performance for most models. If you | |
# find a slight drop in performance, you can set a larger | |
# `nms_pre` than before. | |
results = filter_scores_and_topk( | |
scores, cfg.score_thr, nms_pre, | |
dict(bbox_pred=bbox_pred, priors=priors)) | |
scores, labels, _, filtered_results = results | |
bbox_pred = filtered_results['bbox_pred'] | |
priors = filtered_results['priors'] | |
bboxes = self.bbox_coder.decode( | |
self.anchor_center(priors), bbox_pred, max_shape=img_shape) | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_labels.append(labels) | |
return self._bbox_post_process( | |
mlvl_scores, | |
mlvl_labels, | |
mlvl_bboxes, | |
img_meta['scale_factor'], | |
cfg, | |
rescale=rescale, | |
with_nms=with_nms) | |
def get_targets(self, | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes_list, | |
img_metas, | |
gt_bboxes_ignore_list=None, | |
gt_labels_list=None, | |
label_channels=1, | |
unmap_outputs=True): | |
"""Get targets for GFL head. | |
This method is almost the same as `AnchorHead.get_targets()`. Besides | |
returning the targets as the parent method does, it also returns the | |
anchors as the first element of the returned tuple. | |
""" | |
num_imgs = len(img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
num_level_anchors_list = [num_level_anchors] * num_imgs | |
# concat all level anchors and flags to a single tensor | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
anchor_list[i] = torch.cat(anchor_list[i]) | |
valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
# compute targets for each image | |
if gt_bboxes_ignore_list is None: | |
gt_bboxes_ignore_list = [None for _ in range(num_imgs)] | |
if gt_labels_list is None: | |
gt_labels_list = [None for _ in range(num_imgs)] | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( | |
self._get_target_single, | |
anchor_list, | |
valid_flag_list, | |
num_level_anchors_list, | |
gt_bboxes_list, | |
gt_bboxes_ignore_list, | |
gt_labels_list, | |
img_metas, | |
label_channels=label_channels, | |
unmap_outputs=unmap_outputs) | |
# no valid anchors | |
if any([labels is None for labels in all_labels]): | |
return None | |
# sampled anchors of all images | |
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) | |
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) | |
# split targets to a list w.r.t. multiple levels | |
anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
labels_list = images_to_levels(all_labels, num_level_anchors) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors) | |
return (anchors_list, labels_list, label_weights_list, | |
bbox_targets_list, bbox_weights_list, num_total_pos, | |
num_total_neg) | |
def _get_target_single(self, | |
flat_anchors, | |
valid_flags, | |
num_level_anchors, | |
gt_bboxes, | |
gt_bboxes_ignore, | |
gt_labels, | |
img_meta, | |
label_channels=1, | |
unmap_outputs=True): | |
"""Compute regression, classification targets for anchors in a single | |
image. | |
Args: | |
flat_anchors (Tensor): Multi-level anchors of the image, which are | |
concatenated into a single tensor of shape (num_anchors, 4) | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_anchors,). | |
num_level_anchors Tensor): Number of anchors of each scale level. | |
gt_bboxes (Tensor): Ground truth bboxes of the image, | |
shape (num_gts, 4). | |
gt_bboxes_ignore (Tensor): Ground truth bboxes to be | |
ignored, shape (num_ignored_gts, 4). | |
gt_labels (Tensor): Ground truth labels of each box, | |
shape (num_gts,). | |
img_meta (dict): Meta info of the image. | |
label_channels (int): Channel of label. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: N is the number of total anchors in the image. | |
anchors (Tensor): All anchors in the image with shape (N, 4). | |
labels (Tensor): Labels of all anchors in the image with shape | |
(N,). | |
label_weights (Tensor): Label weights of all anchor in the | |
image with shape (N,). | |
bbox_targets (Tensor): BBox targets of all anchors in the | |
image with shape (N, 4). | |
bbox_weights (Tensor): BBox weights of all anchors in the | |
image with shape (N, 4). | |
pos_inds (Tensor): Indices of positive anchor with shape | |
(num_pos,). | |
neg_inds (Tensor): Indices of negative anchor with shape | |
(num_neg,). | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg.allowed_border) | |
if not inside_flags.any(): | |
return (None, ) * 7 | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags, :] | |
num_level_anchors_inside = self.get_num_level_anchors_inside( | |
num_level_anchors, inside_flags) | |
assign_result = self.assigner.assign(anchors, num_level_anchors_inside, | |
gt_bboxes, gt_bboxes_ignore, | |
gt_labels) | |
sampling_result = self.sampler.sample(assign_result, anchors, | |
gt_bboxes) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
bbox_weights = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
if gt_labels is None: | |
# Only rpn gives gt_labels as None | |
# Foreground is the first class | |
labels[pos_inds] = 0 | |
else: | |
labels[pos_inds] = gt_labels[ | |
sampling_result.pos_assigned_gt_inds] | |
if self.train_cfg.pos_weight <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg.pos_weight | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
anchors = unmap(anchors, num_total_anchors, inside_flags) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
pos_inds, neg_inds) | |
def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): | |
split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
num_level_anchors_inside = [ | |
int(flags.sum()) for flags in split_inside_flags | |
] | |
return num_level_anchors_inside | |