RockeyCoss
add code files”
51f6859
raw
history blame
37.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch
import torch.nn as nn
from mmcv.ops import DeformConv2d, MaskedConv2d
from mmcv.runner import BaseModule, force_fp32
from mmdet.core import (anchor_inside_flags, build_assigner, build_bbox_coder,
build_prior_generator, build_sampler, calc_region,
images_to_levels, multi_apply, multiclass_nms, unmap)
from ..builder import HEADS, build_loss
from .anchor_head import AnchorHead
class FeatureAdaption(BaseModule):
"""Feature Adaption Module.
Feature Adaption Module is implemented based on DCN v1.
It uses anchor shape prediction rather than feature map to
predict offsets of deform conv layer.
Args:
in_channels (int): Number of channels in the input feature map.
out_channels (int): Number of channels in the output feature map.
kernel_size (int): Deformable conv kernel size.
deform_groups (int): Deformable conv group size.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deform_groups=4,
init_cfg=dict(
type='Normal',
layer='Conv2d',
std=0.1,
override=dict(
type='Normal', name='conv_adaption', std=0.01))):
super(FeatureAdaption, self).__init__(init_cfg)
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
2, deform_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deform_groups=deform_groups)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, shape):
offset = self.conv_offset(shape.detach())
x = self.relu(self.conv_adaption(x, offset))
return x
@HEADS.register_module()
class GuidedAnchorHead(AnchorHead):
"""Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.).
This GuidedAnchorHead will predict high-quality feature guided
anchors and locations where anchors will be kept in inference.
There are mainly 3 categories of bounding-boxes.
- Sampled 9 pairs for target assignment. (approxes)
- The square boxes where the predicted anchors are based on. (squares)
- Guided anchors.
Please refer to https://arxiv.org/abs/1901.03278 for more details.
Args:
num_classes (int): Number of classes.
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels.
approx_anchor_generator (dict): Config dict for approx generator
square_anchor_generator (dict): Config dict for square generator
anchor_coder (dict): Config dict for anchor coder
bbox_coder (dict): Config dict for bbox coder
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
deform_groups: (int): Group number of DCN in
FeatureAdaption module.
loc_filter_thr (float): Threshold to filter out unconcerned regions.
loss_loc (dict): Config of location loss.
loss_shape (dict): Config of anchor shape loss.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of bbox regression loss.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(
self,
num_classes,
in_channels,
feat_channels=256,
approx_anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=8,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
square_anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[8],
strides=[4, 8, 16, 32, 64]),
anchor_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]
),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]
),
reg_decoded_bbox=False,
deform_groups=4,
loc_filter_thr=0.01,
train_cfg=None,
test_cfg=None,
loss_loc=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0),
init_cfg=dict(type='Normal', layer='Conv2d', std=0.01,
override=dict(type='Normal',
name='conv_loc',
std=0.01,
bias_prob=0.01))): # yapf: disable
super(AnchorHead, self).__init__(init_cfg)
self.in_channels = in_channels
self.num_classes = num_classes
self.feat_channels = feat_channels
self.deform_groups = deform_groups
self.loc_filter_thr = loc_filter_thr
# build approx_anchor_generator and square_anchor_generator
assert (approx_anchor_generator['octave_base_scale'] ==
square_anchor_generator['scales'][0])
assert (approx_anchor_generator['strides'] ==
square_anchor_generator['strides'])
self.approx_anchor_generator = build_prior_generator(
approx_anchor_generator)
self.square_anchor_generator = build_prior_generator(
square_anchor_generator)
self.approxs_per_octave = self.approx_anchor_generator \
.num_base_priors[0]
self.reg_decoded_bbox = reg_decoded_bbox
# one anchor per location
self.num_base_priors = self.square_anchor_generator.num_base_priors[0]
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
self.loc_focal_loss = loss_loc['type'] in ['FocalLoss']
self.sampling = loss_cls['type'] not in ['FocalLoss']
self.ga_sampling = train_cfg is not None and hasattr(
train_cfg, 'ga_sampler')
if self.use_sigmoid_cls:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
# build bbox_coder
self.anchor_coder = build_bbox_coder(anchor_coder)
self.bbox_coder = build_bbox_coder(bbox_coder)
# build losses
self.loss_loc = build_loss(loss_loc)
self.loss_shape = build_loss(loss_shape)
self.loss_cls = build_loss(loss_cls)
self.loss_bbox = build_loss(loss_bbox)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
# use PseudoSampler when sampling is False
if self.sampling and hasattr(self.train_cfg, 'sampler'):
sampler_cfg = self.train_cfg.sampler
else:
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.ga_assigner = build_assigner(self.train_cfg.ga_assigner)
if self.ga_sampling:
ga_sampler_cfg = self.train_cfg.ga_sampler
else:
ga_sampler_cfg = dict(type='PseudoSampler')
self.ga_sampler = build_sampler(ga_sampler_cfg, context=self)
self.fp16_enabled = False
self._init_layers()
@property
def num_anchors(self):
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, '
'please use "num_base_priors" instead')
return self.square_anchor_generator.num_base_priors[0]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.conv_loc = nn.Conv2d(self.in_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2,
1)
self.feature_adaption = FeatureAdaption(
self.in_channels,
self.feat_channels,
kernel_size=3,
deform_groups=self.deform_groups)
self.conv_cls = MaskedConv2d(
self.feat_channels, self.num_base_priors * self.cls_out_channels,
1)
self.conv_reg = MaskedConv2d(self.feat_channels,
self.num_base_priors * 4, 1)
def forward_single(self, x):
loc_pred = self.conv_loc(x)
shape_pred = self.conv_shape(x)
x = self.feature_adaption(x, shape_pred)
# masked conv is only used during inference for speed-up
if not self.training:
mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr
else:
mask = None
cls_score = self.conv_cls(x, mask)
bbox_pred = self.conv_reg(x, mask)
return cls_score, bbox_pred, shape_pred, loc_pred
def forward(self, feats):
return multi_apply(self.forward_single, feats)
def get_sampled_approxs(self, featmap_sizes, img_metas, device='cuda'):
"""Get sampled approxs and inside flags according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
img_metas (list[dict]): Image meta info.
device (torch.device | str): device for returned tensors
Returns:
tuple: approxes of each image, inside flags of each image
"""
num_imgs = len(img_metas)
# since feature map sizes of all images are the same, we only compute
# approxes for one time
multi_level_approxs = self.approx_anchor_generator.grid_priors(
featmap_sizes, device=device)
approxs_list = [multi_level_approxs for _ in range(num_imgs)]
# for each image, we compute inside flags of multi level approxes
inside_flag_list = []
for img_id, img_meta in enumerate(img_metas):
multi_level_flags = []
multi_level_approxs = approxs_list[img_id]
# obtain valid flags for each approx first
multi_level_approx_flags = self.approx_anchor_generator \
.valid_flags(featmap_sizes,
img_meta['pad_shape'],
device=device)
for i, flags in enumerate(multi_level_approx_flags):
approxs = multi_level_approxs[i]
inside_flags_list = []
for i in range(self.approxs_per_octave):
split_valid_flags = flags[i::self.approxs_per_octave]
split_approxs = approxs[i::self.approxs_per_octave, :]
inside_flags = anchor_inside_flags(
split_approxs, split_valid_flags,
img_meta['img_shape'][:2],
self.train_cfg.allowed_border)
inside_flags_list.append(inside_flags)
# inside_flag for a position is true if any anchor in this
# position is true
inside_flags = (
torch.stack(inside_flags_list, 0).sum(dim=0) > 0)
multi_level_flags.append(inside_flags)
inside_flag_list.append(multi_level_flags)
return approxs_list, inside_flag_list
def get_anchors(self,
featmap_sizes,
shape_preds,
loc_preds,
img_metas,
use_loc_filter=False,
device='cuda'):
"""Get squares according to feature map sizes and guided anchors.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
shape_preds (list[tensor]): Multi-level shape predictions.
loc_preds (list[tensor]): Multi-level location predictions.
img_metas (list[dict]): Image meta info.
use_loc_filter (bool): Use loc filter or not.
device (torch.device | str): device for returned tensors
Returns:
tuple: square approxs of each image, guided anchors of each image,
loc masks of each image
"""
num_imgs = len(img_metas)
num_levels = len(featmap_sizes)
# since feature map sizes of all images are the same, we only compute
# squares for one time
multi_level_squares = self.square_anchor_generator.grid_priors(
featmap_sizes, device=device)
squares_list = [multi_level_squares for _ in range(num_imgs)]
# for each image, we compute multi level guided anchors
guided_anchors_list = []
loc_mask_list = []
for img_id, img_meta in enumerate(img_metas):
multi_level_guided_anchors = []
multi_level_loc_mask = []
for i in range(num_levels):
squares = squares_list[img_id][i]
shape_pred = shape_preds[i][img_id]
loc_pred = loc_preds[i][img_id]
guided_anchors, loc_mask = self._get_guided_anchors_single(
squares,
shape_pred,
loc_pred,
use_loc_filter=use_loc_filter)
multi_level_guided_anchors.append(guided_anchors)
multi_level_loc_mask.append(loc_mask)
guided_anchors_list.append(multi_level_guided_anchors)
loc_mask_list.append(multi_level_loc_mask)
return squares_list, guided_anchors_list, loc_mask_list
def _get_guided_anchors_single(self,
squares,
shape_pred,
loc_pred,
use_loc_filter=False):
"""Get guided anchors and loc masks for a single level.
Args:
square (tensor): Squares of a single level.
shape_pred (tensor): Shape predictions of a single level.
loc_pred (tensor): Loc predictions of a single level.
use_loc_filter (list[tensor]): Use loc filter or not.
Returns:
tuple: guided anchors, location masks
"""
# calculate location filtering mask
loc_pred = loc_pred.sigmoid().detach()
if use_loc_filter:
loc_mask = loc_pred >= self.loc_filter_thr
else:
loc_mask = loc_pred >= 0.0
mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors)
mask = mask.contiguous().view(-1)
# calculate guided anchors
squares = squares[mask]
anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view(
-1, 2).detach()[mask]
bbox_deltas = anchor_deltas.new_full(squares.size(), 0)
bbox_deltas[:, 2:] = anchor_deltas
guided_anchors = self.anchor_coder.decode(
squares, bbox_deltas, wh_ratio_clip=1e-6)
return guided_anchors, mask
def ga_loc_targets(self, gt_bboxes_list, featmap_sizes):
"""Compute location targets for guided anchoring.
Each feature map is divided into positive, negative and ignore regions.
- positive regions: target 1, weight 1
- ignore regions: target 0, weight 0
- negative regions: target 0, weight 0.1
Args:
gt_bboxes_list (list[Tensor]): Gt bboxes of each image.
featmap_sizes (list[tuple]): Multi level sizes of each feature
maps.
Returns:
tuple
"""
anchor_scale = self.approx_anchor_generator.octave_base_scale
anchor_strides = self.approx_anchor_generator.strides
# Currently only supports same stride in x and y direction.
for stride in anchor_strides:
assert (stride[0] == stride[1])
anchor_strides = [stride[0] for stride in anchor_strides]
center_ratio = self.train_cfg.center_ratio
ignore_ratio = self.train_cfg.ignore_ratio
img_per_gpu = len(gt_bboxes_list)
num_lvls = len(featmap_sizes)
r1 = (1 - center_ratio) / 2
r2 = (1 - ignore_ratio) / 2
all_loc_targets = []
all_loc_weights = []
all_ignore_map = []
for lvl_id in range(num_lvls):
h, w = featmap_sizes[lvl_id]
loc_targets = torch.zeros(
img_per_gpu,
1,
h,
w,
device=gt_bboxes_list[0].device,
dtype=torch.float32)
loc_weights = torch.full_like(loc_targets, -1)
ignore_map = torch.zeros_like(loc_targets)
all_loc_targets.append(loc_targets)
all_loc_weights.append(loc_weights)
all_ignore_map.append(ignore_map)
for img_id in range(img_per_gpu):
gt_bboxes = gt_bboxes_list[img_id]
scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
(gt_bboxes[:, 3] - gt_bboxes[:, 1]))
min_anchor_size = scale.new_full(
(1, ), float(anchor_scale * anchor_strides[0]))
# assign gt bboxes to different feature levels w.r.t. their scales
target_lvls = torch.floor(
torch.log2(scale) - torch.log2(min_anchor_size) + 0.5)
target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long()
for gt_id in range(gt_bboxes.size(0)):
lvl = target_lvls[gt_id].item()
# rescaled to corresponding feature map
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl]
# calculate ignore regions
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[lvl])
# calculate positive (center) regions
ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region(
gt_, r1, featmap_sizes[lvl])
all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1,
ctr_x1:ctr_x2 + 1] = 1
all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
ignore_x1:ignore_x2 + 1] = 0
all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1,
ctr_x1:ctr_x2 + 1] = 1
# calculate ignore map on nearby low level feature
if lvl > 0:
d_lvl = lvl - 1
# rescaled to corresponding feature map
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl]
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[d_lvl])
all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
ignore_x1:ignore_x2 + 1] = 1
# calculate ignore map on nearby high level feature
if lvl < num_lvls - 1:
u_lvl = lvl + 1
# rescaled to corresponding feature map
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl]
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[u_lvl])
all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
ignore_x1:ignore_x2 + 1] = 1
for lvl_id in range(num_lvls):
# ignore negative regions w.r.t. ignore map
all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0)
& (all_ignore_map[lvl_id] > 0)] = 0
# set negative regions with weight 0.1
all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1
# loc average factor to balance loss
loc_avg_factor = sum(
[t.size(0) * t.size(-1) * t.size(-2)
for t in all_loc_targets]) / 200
return all_loc_targets, all_loc_weights, loc_avg_factor
def _ga_shape_target_single(self,
flat_approxs,
inside_flags,
flat_squares,
gt_bboxes,
gt_bboxes_ignore,
img_meta,
unmap_outputs=True):
"""Compute guided anchoring targets.
This function returns sampled anchors and gt bboxes directly
rather than calculates regression targets.
Args:
flat_approxs (Tensor): flat approxs of a single image,
shape (n, 4)
inside_flags (Tensor): inside flags of a single image,
shape (n, ).
flat_squares (Tensor): flat squares of a single image,
shape (approxs_per_octave * n, 4)
gt_bboxes (Tensor): Ground truth bboxes of a single image.
img_meta (dict): Meta info of a single image.
approxs_per_octave (int): number of approxs per octave
cfg (dict): RPN train configs.
unmap_outputs (bool): unmap outputs or not.
Returns:
tuple
"""
if not inside_flags.any():
return (None, ) * 5
# assign gt and sample anchors
expand_inside_flags = inside_flags[:, None].expand(
-1, self.approxs_per_octave).reshape(-1)
approxs = flat_approxs[expand_inside_flags, :]
squares = flat_squares[inside_flags, :]
assign_result = self.ga_assigner.assign(approxs, squares,
self.approxs_per_octave,
gt_bboxes, gt_bboxes_ignore)
sampling_result = self.ga_sampler.sample(assign_result, squares,
gt_bboxes)
bbox_anchors = torch.zeros_like(squares)
bbox_gts = torch.zeros_like(squares)
bbox_weights = torch.zeros_like(squares)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes
bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes
bbox_weights[pos_inds, :] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_squares.size(0)
bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags)
bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds)
def ga_shape_targets(self,
approx_list,
inside_flag_list,
square_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
unmap_outputs=True):
"""Compute guided anchoring targets.
Args:
approx_list (list[list]): Multi level approxs of each image.
inside_flag_list (list[list]): Multi level inside flags of each
image.
square_list (list[list]): Multi level squares of each image.
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes.
unmap_outputs (bool): unmap outputs or not.
Returns:
tuple
"""
num_imgs = len(img_metas)
assert len(approx_list) == len(inside_flag_list) == len(
square_list) == num_imgs
# anchor number of multi levels
num_level_squares = [squares.size(0) for squares in square_list[0]]
# concat all level anchors and flags to a single tensor
inside_flag_flat_list = []
approx_flat_list = []
square_flat_list = []
for i in range(num_imgs):
assert len(square_list[i]) == len(inside_flag_list[i])
inside_flag_flat_list.append(torch.cat(inside_flag_list[i]))
approx_flat_list.append(torch.cat(approx_list[i]))
square_flat_list.append(torch.cat(square_list[i]))
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
(all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list,
neg_inds_list) = multi_apply(
self._ga_shape_target_single,
approx_flat_list,
inside_flag_flat_list,
square_flat_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
img_metas,
unmap_outputs=unmap_outputs)
# no valid anchors
if any([bbox_anchors is None for bbox_anchors in all_bbox_anchors]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
# split targets to a list w.r.t. multiple levels
bbox_anchors_list = images_to_levels(all_bbox_anchors,
num_level_squares)
bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_squares)
return (bbox_anchors_list, bbox_gts_list, bbox_weights_list,
num_total_pos, num_total_neg)
def loss_shape_single(self, shape_pred, bbox_anchors, bbox_gts,
anchor_weights, anchor_total_num):
shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2)
bbox_anchors = bbox_anchors.contiguous().view(-1, 4)
bbox_gts = bbox_gts.contiguous().view(-1, 4)
anchor_weights = anchor_weights.contiguous().view(-1, 4)
bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0)
bbox_deltas[:, 2:] += shape_pred
# filter out negative samples to speed-up weighted_bounded_iou_loss
inds = torch.nonzero(
anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1)
bbox_deltas_ = bbox_deltas[inds]
bbox_anchors_ = bbox_anchors[inds]
bbox_gts_ = bbox_gts[inds]
anchor_weights_ = anchor_weights[inds]
pred_anchors_ = self.anchor_coder.decode(
bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6)
loss_shape = self.loss_shape(
pred_anchors_,
bbox_gts_,
anchor_weights_,
avg_factor=anchor_total_num)
return loss_shape
def loss_loc_single(self, loc_pred, loc_target, loc_weight,
loc_avg_factor):
loss_loc = self.loss_loc(
loc_pred.reshape(-1, 1),
loc_target.reshape(-1).long(),
loc_weight.reshape(-1),
avg_factor=loc_avg_factor)
return loss_loc
@force_fp32(
apply_to=('cls_scores', 'bbox_preds', 'shape_preds', 'loc_preds'))
def loss(self,
cls_scores,
bbox_preds,
shape_preds,
loc_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels
device = cls_scores[0].device
# get loc targets
loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets(
gt_bboxes, featmap_sizes)
# get sampled approxes
approxs_list, inside_flag_list = self.get_sampled_approxs(
featmap_sizes, img_metas, device=device)
# get squares and guided anchors
squares_list, guided_anchors_list, _ = self.get_anchors(
featmap_sizes, shape_preds, loc_preds, img_metas, device=device)
# get shape targets
shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list,
squares_list, gt_bboxes,
img_metas)
if shape_targets is None:
return None
(bbox_anchors_list, bbox_gts_list, anchor_weights_list, anchor_fg_num,
anchor_bg_num) = shape_targets
anchor_total_num = (
anchor_fg_num if not self.ga_sampling else anchor_fg_num +
anchor_bg_num)
# get anchor targets
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
guided_anchors_list,
inside_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
num_total_samples = (
num_total_pos + num_total_neg if self.sampling else num_total_pos)
# anchor number of multi levels
num_level_anchors = [
anchors.size(0) for anchors in guided_anchors_list[0]
]
# concat all level anchors to a single tensor
concat_anchor_list = []
for i in range(len(guided_anchors_list)):
concat_anchor_list.append(torch.cat(guided_anchors_list[i]))
all_anchor_list = images_to_levels(concat_anchor_list,
num_level_anchors)
# get classification and bbox regression losses
losses_cls, losses_bbox = multi_apply(
self.loss_single,
cls_scores,
bbox_preds,
all_anchor_list,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
num_total_samples=num_total_samples)
# get anchor location loss
losses_loc = []
for i in range(len(loc_preds)):
loss_loc = self.loss_loc_single(
loc_preds[i],
loc_targets[i],
loc_weights[i],
loc_avg_factor=loc_avg_factor)
losses_loc.append(loss_loc)
# get anchor shape loss
losses_shape = []
for i in range(len(shape_preds)):
loss_shape = self.loss_shape_single(
shape_preds[i],
bbox_anchors_list[i],
bbox_gts_list[i],
anchor_weights_list[i],
anchor_total_num=anchor_total_num)
losses_shape.append(loss_shape)
return dict(
loss_cls=losses_cls,
loss_bbox=losses_bbox,
loss_shape=losses_shape,
loss_loc=losses_loc)
@force_fp32(
apply_to=('cls_scores', 'bbox_preds', 'shape_preds', 'loc_preds'))
def get_bboxes(self,
cls_scores,
bbox_preds,
shape_preds,
loc_preds,
img_metas,
cfg=None,
rescale=False):
assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len(
loc_preds)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
device = cls_scores[0].device
# get guided anchors
_, guided_anchors, loc_masks = self.get_anchors(
featmap_sizes,
shape_preds,
loc_preds,
img_metas,
use_loc_filter=not self.training,
device=device)
result_list = []
for img_id in range(len(img_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_pred_list = [
bbox_preds[i][img_id].detach() for i in range(num_levels)
]
guided_anchor_list = [
guided_anchors[img_id][i].detach() for i in range(num_levels)
]
loc_mask_list = [
loc_masks[img_id][i].detach() for i in range(num_levels)
]
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list,
guided_anchor_list,
loc_mask_list, img_shape,
scale_factor, cfg, rescale)
result_list.append(proposals)
return result_list
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_anchors,
mlvl_masks,
img_shape,
scale_factor,
cfg,
rescale=False):
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds,
mlvl_anchors,
mlvl_masks):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
# if no location is kept, end.
if mask.sum() == 0:
continue
# reshape scores and bbox_pred
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
# filter scores, bbox_pred w.r.t. mask.
# anchors are filtered in get_anchors() beforehand.
scores = scores[mask, :]
bbox_pred = bbox_pred[mask, :]
if scores.dim() == 0:
anchors = anchors.unsqueeze(0)
scores = scores.unsqueeze(0)
bbox_pred = bbox_pred.unsqueeze(0)
# filter anchors, bbox_pred, scores w.r.t. scores
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
if self.use_sigmoid_cls:
max_scores, _ = scores.max(dim=1)
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
max_scores, _ = scores[:, :-1].max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = self.bbox_coder.decode(
anchors, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
if self.use_sigmoid_cls:
# Add a dummy background class to the backend when using sigmoid
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
# multi class NMS
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels