Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, Scale | |
from mmdet.models.dense_heads.fcos_head import FCOSHead | |
from ..builder import HEADS | |
class NASFCOSHead(FCOSHead): | |
"""Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_. | |
It is quite similar with FCOS head, except for the searched structure of | |
classification branch and bbox regression branch, where a structure of | |
"dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. | |
""" | |
def __init__(self, *args, init_cfg=None, **kwargs): | |
if init_cfg is None: | |
init_cfg = [ | |
dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), | |
dict( | |
type='Normal', | |
std=0.01, | |
override=[ | |
dict(name='conv_reg'), | |
dict(name='conv_centerness'), | |
dict( | |
name='conv_cls', | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01) | |
]), | |
] | |
super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs) | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
dconv3x3_config = dict( | |
type='DCNv2', | |
kernel_size=3, | |
use_bias=True, | |
deform_groups=2, | |
padding=1) | |
conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) | |
conv1x1_config = dict(type='Conv', kernel_size=1) | |
self.arch_config = [ | |
dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config | |
] | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i, op_ in enumerate(self.arch_config): | |
op = copy.deepcopy(op_) | |
chn = self.in_channels if i == 0 else self.feat_channels | |
assert isinstance(op, dict) | |
use_bias = op.pop('use_bias', False) | |
padding = op.pop('padding', 0) | |
kernel_size = op.pop('kernel_size') | |
module = ConvModule( | |
chn, | |
self.feat_channels, | |
kernel_size, | |
stride=1, | |
padding=padding, | |
norm_cfg=self.norm_cfg, | |
bias=use_bias, | |
conv_cfg=op) | |
self.cls_convs.append(copy.deepcopy(module)) | |
self.reg_convs.append(copy.deepcopy(module)) | |
self.conv_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) | |
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) | |
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) | |