Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import mmcv | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmdet.core import InstanceData, mask_matrix_nms, multi_apply | |
from mmdet.core.utils import center_of_mass, generate_coordinate | |
from mmdet.models.builder import HEADS, build_loss | |
from mmdet.utils.misc import floordiv | |
from .base_mask_head import BaseMaskHead | |
class SOLOHead(BaseMaskHead): | |
"""SOLO mask head used in `SOLO: Segmenting Objects by Locations. | |
<https://arxiv.org/abs/1912.04488>`_ | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels. Used in child classes. | |
Default: 256. | |
stacked_convs (int): Number of stacking convs of the head. | |
Default: 4. | |
strides (tuple): Downsample factor of each feature map. | |
scale_ranges (tuple[tuple[int, int]]): Area range of multiple | |
level masks, in the format [(min1, max1), (min2, max2), ...]. | |
A range of (16, 64) means the area range between (16, 64). | |
pos_scale (float): Constant scale factor to control the center region. | |
num_grids (list[int]): Divided image into a uniform grids, each | |
feature map has a different grid value. The number of output | |
channels is grid ** 2. Default: [40, 36, 24, 16, 12]. | |
cls_down_index (int): The index of downsample operation in | |
classification branch. Default: 0. | |
loss_mask (dict): Config of mask loss. | |
loss_cls (dict): Config of classification loss. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: norm_cfg=dict(type='GN', num_groups=32, | |
requires_grad=True). | |
train_cfg (dict): Training config of head. | |
test_cfg (dict): Testing config of head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
num_classes, | |
in_channels, | |
feat_channels=256, | |
stacked_convs=4, | |
strides=(4, 8, 16, 32, 64), | |
scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, 512)), | |
pos_scale=0.2, | |
num_grids=[40, 36, 24, 16, 12], | |
cls_down_index=0, | |
loss_mask=None, | |
loss_cls=None, | |
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=[ | |
dict(type='Normal', layer='Conv2d', std=0.01), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_mask_list')), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_cls')) | |
], | |
): | |
super(SOLOHead, self).__init__(init_cfg) | |
self.num_classes = num_classes | |
self.cls_out_channels = self.num_classes | |
self.in_channels = in_channels | |
self.feat_channels = feat_channels | |
self.stacked_convs = stacked_convs | |
self.strides = strides | |
self.num_grids = num_grids | |
# number of FPN feats | |
self.num_levels = len(strides) | |
assert self.num_levels == len(scale_ranges) == len(num_grids) | |
self.scale_ranges = scale_ranges | |
self.pos_scale = pos_scale | |
self.cls_down_index = cls_down_index | |
self.loss_cls = build_loss(loss_cls) | |
self.loss_mask = build_loss(loss_mask) | |
self.norm_cfg = norm_cfg | |
self.init_cfg = init_cfg | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self._init_layers() | |
def _init_layers(self): | |
self.mask_convs = nn.ModuleList() | |
self.cls_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels + 2 if i == 0 else self.feat_channels | |
self.mask_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg)) | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg)) | |
self.conv_mask_list = nn.ModuleList() | |
for num_grid in self.num_grids: | |
self.conv_mask_list.append( | |
nn.Conv2d(self.feat_channels, num_grid**2, 1)) | |
self.conv_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
def resize_feats(self, feats): | |
"""Downsample the first feat and upsample last feat in feats.""" | |
out = [] | |
for i in range(len(feats)): | |
if i == 0: | |
out.append( | |
F.interpolate( | |
feats[0], | |
size=feats[i + 1].shape[-2:], | |
mode='bilinear', | |
align_corners=False)) | |
elif i == len(feats) - 1: | |
out.append( | |
F.interpolate( | |
feats[i], | |
size=feats[i - 1].shape[-2:], | |
mode='bilinear', | |
align_corners=False)) | |
else: | |
out.append(feats[i]) | |
return out | |
def forward(self, feats): | |
assert len(feats) == self.num_levels | |
feats = self.resize_feats(feats) | |
mlvl_mask_preds = [] | |
mlvl_cls_preds = [] | |
for i in range(self.num_levels): | |
x = feats[i] | |
mask_feat = x | |
cls_feat = x | |
# generate and concat the coordinate | |
coord_feat = generate_coordinate(mask_feat.size(), | |
mask_feat.device) | |
mask_feat = torch.cat([mask_feat, coord_feat], 1) | |
for mask_layer in (self.mask_convs): | |
mask_feat = mask_layer(mask_feat) | |
mask_feat = F.interpolate( | |
mask_feat, scale_factor=2, mode='bilinear') | |
mask_pred = self.conv_mask_list[i](mask_feat) | |
# cls branch | |
for j, cls_layer in enumerate(self.cls_convs): | |
if j == self.cls_down_index: | |
num_grid = self.num_grids[i] | |
cls_feat = F.interpolate( | |
cls_feat, size=num_grid, mode='bilinear') | |
cls_feat = cls_layer(cls_feat) | |
cls_pred = self.conv_cls(cls_feat) | |
if not self.training: | |
feat_wh = feats[0].size()[-2:] | |
upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) | |
mask_pred = F.interpolate( | |
mask_pred.sigmoid(), size=upsampled_size, mode='bilinear') | |
cls_pred = cls_pred.sigmoid() | |
# get local maximum | |
local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) | |
keep_mask = local_max[:, :, :-1, :-1] == cls_pred | |
cls_pred = cls_pred * keep_mask | |
mlvl_mask_preds.append(mask_pred) | |
mlvl_cls_preds.append(cls_pred) | |
return mlvl_mask_preds, mlvl_cls_preds | |
def loss(self, | |
mlvl_mask_preds, | |
mlvl_cls_preds, | |
gt_labels, | |
gt_masks, | |
img_metas, | |
gt_bboxes=None, | |
**kwargs): | |
"""Calculate the loss of total batch. | |
Args: | |
mlvl_mask_preds (list[Tensor]): Multi-level mask prediction. | |
Each element in the list has shape | |
(batch_size, num_grids**2 ,h ,w). | |
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element | |
in the list has shape | |
(batch_size, num_classes, num_grids ,num_grids). | |
gt_labels (list[Tensor]): Labels of multiple images. | |
gt_masks (list[Tensor]): Ground truth masks of multiple images. | |
Each has shape (num_instances, h, w). | |
img_metas (list[dict]): Meta information of multiple images. | |
gt_bboxes (list[Tensor]): Ground truth bboxes of multiple | |
images. Default: None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
num_levels = self.num_levels | |
num_imgs = len(gt_labels) | |
featmap_sizes = [featmap.size()[-2:] for featmap in mlvl_mask_preds] | |
# `BoolTensor` in `pos_masks` represent | |
# whether the corresponding point is | |
# positive | |
pos_mask_targets, labels, pos_masks = multi_apply( | |
self._get_targets_single, | |
gt_bboxes, | |
gt_labels, | |
gt_masks, | |
featmap_sizes=featmap_sizes) | |
# change from the outside list meaning multi images | |
# to the outside list meaning multi levels | |
mlvl_pos_mask_targets = [[] for _ in range(num_levels)] | |
mlvl_pos_mask_preds = [[] for _ in range(num_levels)] | |
mlvl_pos_masks = [[] for _ in range(num_levels)] | |
mlvl_labels = [[] for _ in range(num_levels)] | |
for img_id in range(num_imgs): | |
assert num_levels == len(pos_mask_targets[img_id]) | |
for lvl in range(num_levels): | |
mlvl_pos_mask_targets[lvl].append( | |
pos_mask_targets[img_id][lvl]) | |
mlvl_pos_mask_preds[lvl].append( | |
mlvl_mask_preds[lvl][img_id, pos_masks[img_id][lvl], ...]) | |
mlvl_pos_masks[lvl].append(pos_masks[img_id][lvl].flatten()) | |
mlvl_labels[lvl].append(labels[img_id][lvl].flatten()) | |
# cat multiple image | |
temp_mlvl_cls_preds = [] | |
for lvl in range(num_levels): | |
mlvl_pos_mask_targets[lvl] = torch.cat( | |
mlvl_pos_mask_targets[lvl], dim=0) | |
mlvl_pos_mask_preds[lvl] = torch.cat( | |
mlvl_pos_mask_preds[lvl], dim=0) | |
mlvl_pos_masks[lvl] = torch.cat(mlvl_pos_masks[lvl], dim=0) | |
mlvl_labels[lvl] = torch.cat(mlvl_labels[lvl], dim=0) | |
temp_mlvl_cls_preds.append(mlvl_cls_preds[lvl].permute( | |
0, 2, 3, 1).reshape(-1, self.cls_out_channels)) | |
num_pos = sum(item.sum() for item in mlvl_pos_masks) | |
# dice loss | |
loss_mask = [] | |
for pred, target in zip(mlvl_pos_mask_preds, mlvl_pos_mask_targets): | |
if pred.size()[0] == 0: | |
loss_mask.append(pred.sum().unsqueeze(0)) | |
continue | |
loss_mask.append( | |
self.loss_mask(pred, target, reduction_override='none')) | |
if num_pos > 0: | |
loss_mask = torch.cat(loss_mask).sum() / num_pos | |
else: | |
loss_mask = torch.cat(loss_mask).mean() | |
flatten_labels = torch.cat(mlvl_labels) | |
flatten_cls_preds = torch.cat(temp_mlvl_cls_preds) | |
loss_cls = self.loss_cls( | |
flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1) | |
return dict(loss_mask=loss_mask, loss_cls=loss_cls) | |
def _get_targets_single(self, | |
gt_bboxes, | |
gt_labels, | |
gt_masks, | |
featmap_sizes=None): | |
"""Compute targets for predictions of single image. | |
Args: | |
gt_bboxes (Tensor): Ground truth bbox of each instance, | |
shape (num_gts, 4). | |
gt_labels (Tensor): Ground truth label of each instance, | |
shape (num_gts,). | |
gt_masks (Tensor): Ground truth mask of each instance, | |
shape (num_gts, h, w). | |
featmap_sizes (list[:obj:`torch.size`]): Size of each | |
feature map from feature pyramid, each element | |
means (feat_h, feat_w). Default: None. | |
Returns: | |
Tuple: Usually returns a tuple containing targets for predictions. | |
- mlvl_pos_mask_targets (list[Tensor]): Each element represent | |
the binary mask targets for positive points in this | |
level, has shape (num_pos, out_h, out_w). | |
- mlvl_labels (list[Tensor]): Each element is | |
classification labels for all | |
points in this level, has shape | |
(num_grid, num_grid). | |
- mlvl_pos_masks (list[Tensor]): Each element is | |
a `BoolTensor` to represent whether the | |
corresponding point in single level | |
is positive, has shape (num_grid **2). | |
""" | |
device = gt_labels.device | |
gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * | |
(gt_bboxes[:, 3] - gt_bboxes[:, 1])) | |
mlvl_pos_mask_targets = [] | |
mlvl_labels = [] | |
mlvl_pos_masks = [] | |
for (lower_bound, upper_bound), stride, featmap_size, num_grid \ | |
in zip(self.scale_ranges, self.strides, | |
featmap_sizes, self.num_grids): | |
mask_target = torch.zeros( | |
[num_grid**2, featmap_size[0], featmap_size[1]], | |
dtype=torch.uint8, | |
device=device) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
labels = torch.zeros([num_grid, num_grid], | |
dtype=torch.int64, | |
device=device) + self.num_classes | |
pos_mask = torch.zeros([num_grid**2], | |
dtype=torch.bool, | |
device=device) | |
gt_inds = ((gt_areas >= lower_bound) & | |
(gt_areas <= upper_bound)).nonzero().flatten() | |
if len(gt_inds) == 0: | |
mlvl_pos_mask_targets.append( | |
mask_target.new_zeros(0, featmap_size[0], featmap_size[1])) | |
mlvl_labels.append(labels) | |
mlvl_pos_masks.append(pos_mask) | |
continue | |
hit_gt_bboxes = gt_bboxes[gt_inds] | |
hit_gt_labels = gt_labels[gt_inds] | |
hit_gt_masks = gt_masks[gt_inds, ...] | |
pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] - | |
hit_gt_bboxes[:, 0]) * self.pos_scale | |
pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] - | |
hit_gt_bboxes[:, 1]) * self.pos_scale | |
# Make sure hit_gt_masks has a value | |
valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0 | |
output_stride = stride / 2 | |
for gt_mask, gt_label, pos_h_range, pos_w_range, \ | |
valid_mask_flag in \ | |
zip(hit_gt_masks, hit_gt_labels, pos_h_ranges, | |
pos_w_ranges, valid_mask_flags): | |
if not valid_mask_flag: | |
continue | |
upsampled_size = (featmap_sizes[0][0] * 4, | |
featmap_sizes[0][1] * 4) | |
center_h, center_w = center_of_mass(gt_mask) | |
coord_w = int( | |
floordiv((center_w / upsampled_size[1]), (1. / num_grid), | |
rounding_mode='trunc')) | |
coord_h = int( | |
floordiv((center_h / upsampled_size[0]), (1. / num_grid), | |
rounding_mode='trunc')) | |
# left, top, right, down | |
top_box = max( | |
0, | |
int( | |
floordiv( | |
(center_h - pos_h_range) / upsampled_size[0], | |
(1. / num_grid), | |
rounding_mode='trunc'))) | |
down_box = min( | |
num_grid - 1, | |
int( | |
floordiv( | |
(center_h + pos_h_range) / upsampled_size[0], | |
(1. / num_grid), | |
rounding_mode='trunc'))) | |
left_box = max( | |
0, | |
int( | |
floordiv( | |
(center_w - pos_w_range) / upsampled_size[1], | |
(1. / num_grid), | |
rounding_mode='trunc'))) | |
right_box = min( | |
num_grid - 1, | |
int( | |
floordiv( | |
(center_w + pos_w_range) / upsampled_size[1], | |
(1. / num_grid), | |
rounding_mode='trunc'))) | |
top = max(top_box, coord_h - 1) | |
down = min(down_box, coord_h + 1) | |
left = max(coord_w - 1, left_box) | |
right = min(right_box, coord_w + 1) | |
labels[top:(down + 1), left:(right + 1)] = gt_label | |
# ins | |
gt_mask = np.uint8(gt_mask.cpu().numpy()) | |
# Follow the original implementation, F.interpolate is | |
# different from cv2 and opencv | |
gt_mask = mmcv.imrescale(gt_mask, scale=1. / output_stride) | |
gt_mask = torch.from_numpy(gt_mask).to(device=device) | |
for i in range(top, down + 1): | |
for j in range(left, right + 1): | |
index = int(i * num_grid + j) | |
mask_target[index, :gt_mask.shape[0], :gt_mask. | |
shape[1]] = gt_mask | |
pos_mask[index] = True | |
mlvl_pos_mask_targets.append(mask_target[pos_mask]) | |
mlvl_labels.append(labels) | |
mlvl_pos_masks.append(pos_mask) | |
return mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks | |
def get_results(self, mlvl_mask_preds, mlvl_cls_scores, img_metas, | |
**kwargs): | |
"""Get multi-image mask results. | |
Args: | |
mlvl_mask_preds (list[Tensor]): Multi-level mask prediction. | |
Each element in the list has shape | |
(batch_size, num_grids**2 ,h ,w). | |
mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element | |
in the list has shape | |
(batch_size, num_classes, num_grids ,num_grids). | |
img_metas (list[dict]): Meta information of all images. | |
Returns: | |
list[:obj:`InstanceData`]: Processed results of multiple | |
images.Each :obj:`InstanceData` usually contains | |
following keys. | |
- scores (Tensor): Classification scores, has shape | |
(num_instance,). | |
- labels (Tensor): Has shape (num_instances,). | |
- masks (Tensor): Processed mask results, has | |
shape (num_instances, h, w). | |
""" | |
mlvl_cls_scores = [ | |
item.permute(0, 2, 3, 1) for item in mlvl_cls_scores | |
] | |
assert len(mlvl_mask_preds) == len(mlvl_cls_scores) | |
num_levels = len(mlvl_cls_scores) | |
results_list = [] | |
for img_id in range(len(img_metas)): | |
cls_pred_list = [ | |
mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels) | |
for lvl in range(num_levels) | |
] | |
mask_pred_list = [ | |
mlvl_mask_preds[lvl][img_id] for lvl in range(num_levels) | |
] | |
cls_pred_list = torch.cat(cls_pred_list, dim=0) | |
mask_pred_list = torch.cat(mask_pred_list, dim=0) | |
results = self._get_results_single( | |
cls_pred_list, mask_pred_list, img_meta=img_metas[img_id]) | |
results_list.append(results) | |
return results_list | |
def _get_results_single(self, cls_scores, mask_preds, img_meta, cfg=None): | |
"""Get processed mask related results of single image. | |
Args: | |
cls_scores (Tensor): Classification score of all points | |
in single image, has shape (num_points, num_classes). | |
mask_preds (Tensor): Mask prediction of all points in | |
single image, has shape (num_points, feat_h, feat_w). | |
img_meta (dict): Meta information of corresponding image. | |
cfg (dict, optional): Config used in test phase. | |
Default: None. | |
Returns: | |
:obj:`InstanceData`: Processed results of single image. | |
it usually contains following keys. | |
- scores (Tensor): Classification scores, has shape | |
(num_instance,). | |
- labels (Tensor): Has shape (num_instances,). | |
- masks (Tensor): Processed mask results, has | |
shape (num_instances, h, w). | |
""" | |
def empty_results(results, cls_scores): | |
"""Generate a empty results.""" | |
results.scores = cls_scores.new_ones(0) | |
results.masks = cls_scores.new_zeros(0, *results.ori_shape[:2]) | |
results.labels = cls_scores.new_ones(0) | |
return results | |
cfg = self.test_cfg if cfg is None else cfg | |
assert len(cls_scores) == len(mask_preds) | |
results = InstanceData(img_meta) | |
featmap_size = mask_preds.size()[-2:] | |
img_shape = results.img_shape | |
ori_shape = results.ori_shape | |
h, w, _ = img_shape | |
upsampled_size = (featmap_size[0] * 4, featmap_size[1] * 4) | |
score_mask = (cls_scores > cfg.score_thr) | |
cls_scores = cls_scores[score_mask] | |
if len(cls_scores) == 0: | |
return empty_results(results, cls_scores) | |
inds = score_mask.nonzero() | |
cls_labels = inds[:, 1] | |
# Filter the mask mask with an area is smaller than | |
# stride of corresponding feature level | |
lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0) | |
strides = cls_scores.new_ones(lvl_interval[-1]) | |
strides[:lvl_interval[0]] *= self.strides[0] | |
for lvl in range(1, self.num_levels): | |
strides[lvl_interval[lvl - | |
1]:lvl_interval[lvl]] *= self.strides[lvl] | |
strides = strides[inds[:, 0]] | |
mask_preds = mask_preds[inds[:, 0]] | |
masks = mask_preds > cfg.mask_thr | |
sum_masks = masks.sum((1, 2)).float() | |
keep = sum_masks > strides | |
if keep.sum() == 0: | |
return empty_results(results, cls_scores) | |
masks = masks[keep] | |
mask_preds = mask_preds[keep] | |
sum_masks = sum_masks[keep] | |
cls_scores = cls_scores[keep] | |
cls_labels = cls_labels[keep] | |
# maskness. | |
mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks | |
cls_scores *= mask_scores | |
scores, labels, _, keep_inds = mask_matrix_nms( | |
masks, | |
cls_labels, | |
cls_scores, | |
mask_area=sum_masks, | |
nms_pre=cfg.nms_pre, | |
max_num=cfg.max_per_img, | |
kernel=cfg.kernel, | |
sigma=cfg.sigma, | |
filter_thr=cfg.filter_thr) | |
mask_preds = mask_preds[keep_inds] | |
mask_preds = F.interpolate( | |
mask_preds.unsqueeze(0), size=upsampled_size, | |
mode='bilinear')[:, :, :h, :w] | |
mask_preds = F.interpolate( | |
mask_preds, size=ori_shape[:2], mode='bilinear').squeeze(0) | |
masks = mask_preds > cfg.mask_thr | |
results.masks = masks | |
results.labels = labels | |
results.scores = scores | |
return results | |
class DecoupledSOLOHead(SOLOHead): | |
"""Decoupled SOLO mask head used in `SOLO: Segmenting Objects by Locations. | |
<https://arxiv.org/abs/1912.04488>`_ | |
Args: | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
*args, | |
init_cfg=[ | |
dict(type='Normal', layer='Conv2d', std=0.01), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_mask_list_x')), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_mask_list_y')), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_cls')) | |
], | |
**kwargs): | |
super(DecoupledSOLOHead, self).__init__( | |
*args, init_cfg=init_cfg, **kwargs) | |
def _init_layers(self): | |
self.mask_convs_x = nn.ModuleList() | |
self.mask_convs_y = nn.ModuleList() | |
self.cls_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels + 1 if i == 0 else self.feat_channels | |
self.mask_convs_x.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg)) | |
self.mask_convs_y.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg)) | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg)) | |
self.conv_mask_list_x = nn.ModuleList() | |
self.conv_mask_list_y = nn.ModuleList() | |
for num_grid in self.num_grids: | |
self.conv_mask_list_x.append( | |
nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) | |
self.conv_mask_list_y.append( | |
nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) | |
self.conv_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
def forward(self, feats): | |
assert len(feats) == self.num_levels | |
feats = self.resize_feats(feats) | |
mask_preds_x = [] | |
mask_preds_y = [] | |
cls_preds = [] | |
for i in range(self.num_levels): | |
x = feats[i] | |
mask_feat = x | |
cls_feat = x | |
# generate and concat the coordinate | |
coord_feat = generate_coordinate(mask_feat.size(), | |
mask_feat.device) | |
mask_feat_x = torch.cat([mask_feat, coord_feat[:, 0:1, ...]], 1) | |
mask_feat_y = torch.cat([mask_feat, coord_feat[:, 1:2, ...]], 1) | |
for mask_layer_x, mask_layer_y in \ | |
zip(self.mask_convs_x, self.mask_convs_y): | |
mask_feat_x = mask_layer_x(mask_feat_x) | |
mask_feat_y = mask_layer_y(mask_feat_y) | |
mask_feat_x = F.interpolate( | |
mask_feat_x, scale_factor=2, mode='bilinear') | |
mask_feat_y = F.interpolate( | |
mask_feat_y, scale_factor=2, mode='bilinear') | |
mask_pred_x = self.conv_mask_list_x[i](mask_feat_x) | |
mask_pred_y = self.conv_mask_list_y[i](mask_feat_y) | |
# cls branch | |
for j, cls_layer in enumerate(self.cls_convs): | |
if j == self.cls_down_index: | |
num_grid = self.num_grids[i] | |
cls_feat = F.interpolate( | |
cls_feat, size=num_grid, mode='bilinear') | |
cls_feat = cls_layer(cls_feat) | |
cls_pred = self.conv_cls(cls_feat) | |
if not self.training: | |
feat_wh = feats[0].size()[-2:] | |
upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) | |
mask_pred_x = F.interpolate( | |
mask_pred_x.sigmoid(), | |
size=upsampled_size, | |
mode='bilinear') | |
mask_pred_y = F.interpolate( | |
mask_pred_y.sigmoid(), | |
size=upsampled_size, | |
mode='bilinear') | |
cls_pred = cls_pred.sigmoid() | |
# get local maximum | |
local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) | |
keep_mask = local_max[:, :, :-1, :-1] == cls_pred | |
cls_pred = cls_pred * keep_mask | |
mask_preds_x.append(mask_pred_x) | |
mask_preds_y.append(mask_pred_y) | |
cls_preds.append(cls_pred) | |
return mask_preds_x, mask_preds_y, cls_preds | |
def loss(self, | |
mlvl_mask_preds_x, | |
mlvl_mask_preds_y, | |
mlvl_cls_preds, | |
gt_labels, | |
gt_masks, | |
img_metas, | |
gt_bboxes=None, | |
**kwargs): | |
"""Calculate the loss of total batch. | |
Args: | |
mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction | |
from x branch. Each element in the list has shape | |
(batch_size, num_grids ,h ,w). | |
mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction | |
from y branch. Each element in the list has shape | |
(batch_size, num_grids ,h ,w). | |
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element | |
in the list has shape | |
(batch_size, num_classes, num_grids ,num_grids). | |
gt_labels (list[Tensor]): Labels of multiple images. | |
gt_masks (list[Tensor]): Ground truth masks of multiple images. | |
Each has shape (num_instances, h, w). | |
img_metas (list[dict]): Meta information of multiple images. | |
gt_bboxes (list[Tensor]): Ground truth bboxes of multiple | |
images. Default: None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
num_levels = self.num_levels | |
num_imgs = len(gt_labels) | |
featmap_sizes = [featmap.size()[-2:] for featmap in mlvl_mask_preds_x] | |
pos_mask_targets, labels, \ | |
xy_pos_indexes = \ | |
multi_apply(self._get_targets_single, | |
gt_bboxes, | |
gt_labels, | |
gt_masks, | |
featmap_sizes=featmap_sizes) | |
# change from the outside list meaning multi images | |
# to the outside list meaning multi levels | |
mlvl_pos_mask_targets = [[] for _ in range(num_levels)] | |
mlvl_pos_mask_preds_x = [[] for _ in range(num_levels)] | |
mlvl_pos_mask_preds_y = [[] for _ in range(num_levels)] | |
mlvl_labels = [[] for _ in range(num_levels)] | |
for img_id in range(num_imgs): | |
for lvl in range(num_levels): | |
mlvl_pos_mask_targets[lvl].append( | |
pos_mask_targets[img_id][lvl]) | |
mlvl_pos_mask_preds_x[lvl].append( | |
mlvl_mask_preds_x[lvl][img_id, | |
xy_pos_indexes[img_id][lvl][:, 1]]) | |
mlvl_pos_mask_preds_y[lvl].append( | |
mlvl_mask_preds_y[lvl][img_id, | |
xy_pos_indexes[img_id][lvl][:, 0]]) | |
mlvl_labels[lvl].append(labels[img_id][lvl].flatten()) | |
# cat multiple image | |
temp_mlvl_cls_preds = [] | |
for lvl in range(num_levels): | |
mlvl_pos_mask_targets[lvl] = torch.cat( | |
mlvl_pos_mask_targets[lvl], dim=0) | |
mlvl_pos_mask_preds_x[lvl] = torch.cat( | |
mlvl_pos_mask_preds_x[lvl], dim=0) | |
mlvl_pos_mask_preds_y[lvl] = torch.cat( | |
mlvl_pos_mask_preds_y[lvl], dim=0) | |
mlvl_labels[lvl] = torch.cat(mlvl_labels[lvl], dim=0) | |
temp_mlvl_cls_preds.append(mlvl_cls_preds[lvl].permute( | |
0, 2, 3, 1).reshape(-1, self.cls_out_channels)) | |
num_pos = 0. | |
# dice loss | |
loss_mask = [] | |
for pred_x, pred_y, target in \ | |
zip(mlvl_pos_mask_preds_x, | |
mlvl_pos_mask_preds_y, mlvl_pos_mask_targets): | |
num_masks = pred_x.size(0) | |
if num_masks == 0: | |
# make sure can get grad | |
loss_mask.append((pred_x.sum() + pred_y.sum()).unsqueeze(0)) | |
continue | |
num_pos += num_masks | |
pred_mask = pred_y.sigmoid() * pred_x.sigmoid() | |
loss_mask.append( | |
self.loss_mask(pred_mask, target, reduction_override='none')) | |
if num_pos > 0: | |
loss_mask = torch.cat(loss_mask).sum() / num_pos | |
else: | |
loss_mask = torch.cat(loss_mask).mean() | |
# cate | |
flatten_labels = torch.cat(mlvl_labels) | |
flatten_cls_preds = torch.cat(temp_mlvl_cls_preds) | |
loss_cls = self.loss_cls( | |
flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1) | |
return dict(loss_mask=loss_mask, loss_cls=loss_cls) | |
def _get_targets_single(self, | |
gt_bboxes, | |
gt_labels, | |
gt_masks, | |
featmap_sizes=None): | |
"""Compute targets for predictions of single image. | |
Args: | |
gt_bboxes (Tensor): Ground truth bbox of each instance, | |
shape (num_gts, 4). | |
gt_labels (Tensor): Ground truth label of each instance, | |
shape (num_gts,). | |
gt_masks (Tensor): Ground truth mask of each instance, | |
shape (num_gts, h, w). | |
featmap_sizes (list[:obj:`torch.size`]): Size of each | |
feature map from feature pyramid, each element | |
means (feat_h, feat_w). Default: None. | |
Returns: | |
Tuple: Usually returns a tuple containing targets for predictions. | |
- mlvl_pos_mask_targets (list[Tensor]): Each element represent | |
the binary mask targets for positive points in this | |
level, has shape (num_pos, out_h, out_w). | |
- mlvl_labels (list[Tensor]): Each element is | |
classification labels for all | |
points in this level, has shape | |
(num_grid, num_grid). | |
- mlvl_xy_pos_indexes (list[Tensor]): Each element | |
in the list contains the index of positive samples in | |
corresponding level, has shape (num_pos, 2), last | |
dimension 2 present (index_x, index_y). | |
""" | |
mlvl_pos_mask_targets, mlvl_labels, \ | |
mlvl_pos_masks = \ | |
super()._get_targets_single(gt_bboxes, gt_labels, gt_masks, | |
featmap_sizes=featmap_sizes) | |
mlvl_xy_pos_indexes = [(item - self.num_classes).nonzero() | |
for item in mlvl_labels] | |
return mlvl_pos_mask_targets, mlvl_labels, mlvl_xy_pos_indexes | |
def get_results(self, | |
mlvl_mask_preds_x, | |
mlvl_mask_preds_y, | |
mlvl_cls_scores, | |
img_metas, | |
rescale=None, | |
**kwargs): | |
"""Get multi-image mask results. | |
Args: | |
mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction | |
from x branch. Each element in the list has shape | |
(batch_size, num_grids ,h ,w). | |
mlvl_mask_preds_y (list[Tensor]): Multi-level mask prediction | |
from y branch. Each element in the list has shape | |
(batch_size, num_grids ,h ,w). | |
mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element | |
in the list has shape | |
(batch_size, num_classes ,num_grids ,num_grids). | |
img_metas (list[dict]): Meta information of all images. | |
Returns: | |
list[:obj:`InstanceData`]: Processed results of multiple | |
images.Each :obj:`InstanceData` usually contains | |
following keys. | |
- scores (Tensor): Classification scores, has shape | |
(num_instance,). | |
- labels (Tensor): Has shape (num_instances,). | |
- masks (Tensor): Processed mask results, has | |
shape (num_instances, h, w). | |
""" | |
mlvl_cls_scores = [ | |
item.permute(0, 2, 3, 1) for item in mlvl_cls_scores | |
] | |
assert len(mlvl_mask_preds_x) == len(mlvl_cls_scores) | |
num_levels = len(mlvl_cls_scores) | |
results_list = [] | |
for img_id in range(len(img_metas)): | |
cls_pred_list = [ | |
mlvl_cls_scores[i][img_id].view( | |
-1, self.cls_out_channels).detach() | |
for i in range(num_levels) | |
] | |
mask_pred_list_x = [ | |
mlvl_mask_preds_x[i][img_id] for i in range(num_levels) | |
] | |
mask_pred_list_y = [ | |
mlvl_mask_preds_y[i][img_id] for i in range(num_levels) | |
] | |
cls_pred_list = torch.cat(cls_pred_list, dim=0) | |
mask_pred_list_x = torch.cat(mask_pred_list_x, dim=0) | |
mask_pred_list_y = torch.cat(mask_pred_list_y, dim=0) | |
results = self._get_results_single( | |
cls_pred_list, | |
mask_pred_list_x, | |
mask_pred_list_y, | |
img_meta=img_metas[img_id], | |
cfg=self.test_cfg) | |
results_list.append(results) | |
return results_list | |
def _get_results_single(self, cls_scores, mask_preds_x, mask_preds_y, | |
img_meta, cfg): | |
"""Get processed mask related results of single image. | |
Args: | |
cls_scores (Tensor): Classification score of all points | |
in single image, has shape (num_points, num_classes). | |
mask_preds_x (Tensor): Mask prediction of x branch of | |
all points in single image, has shape | |
(sum_num_grids, feat_h, feat_w). | |
mask_preds_y (Tensor): Mask prediction of y branch of | |
all points in single image, has shape | |
(sum_num_grids, feat_h, feat_w). | |
img_meta (dict): Meta information of corresponding image. | |
cfg (dict): Config used in test phase. | |
Returns: | |
:obj:`InstanceData`: Processed results of single image. | |
it usually contains following keys. | |
- scores (Tensor): Classification scores, has shape | |
(num_instance,). | |
- labels (Tensor): Has shape (num_instances,). | |
- masks (Tensor): Processed mask results, has | |
shape (num_instances, h, w). | |
""" | |
def empty_results(results, cls_scores): | |
"""Generate a empty results.""" | |
results.scores = cls_scores.new_ones(0) | |
results.masks = cls_scores.new_zeros(0, *results.ori_shape[:2]) | |
results.labels = cls_scores.new_ones(0) | |
return results | |
cfg = self.test_cfg if cfg is None else cfg | |
results = InstanceData(img_meta) | |
img_shape = results.img_shape | |
ori_shape = results.ori_shape | |
h, w, _ = img_shape | |
featmap_size = mask_preds_x.size()[-2:] | |
upsampled_size = (featmap_size[0] * 4, featmap_size[1] * 4) | |
score_mask = (cls_scores > cfg.score_thr) | |
cls_scores = cls_scores[score_mask] | |
inds = score_mask.nonzero() | |
lvl_interval = inds.new_tensor(self.num_grids).pow(2).cumsum(0) | |
num_all_points = lvl_interval[-1] | |
lvl_start_index = inds.new_ones(num_all_points) | |
num_grids = inds.new_ones(num_all_points) | |
seg_size = inds.new_tensor(self.num_grids).cumsum(0) | |
mask_lvl_start_index = inds.new_ones(num_all_points) | |
strides = inds.new_ones(num_all_points) | |
lvl_start_index[:lvl_interval[0]] *= 0 | |
mask_lvl_start_index[:lvl_interval[0]] *= 0 | |
num_grids[:lvl_interval[0]] *= self.num_grids[0] | |
strides[:lvl_interval[0]] *= self.strides[0] | |
for lvl in range(1, self.num_levels): | |
lvl_start_index[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ | |
lvl_interval[lvl - 1] | |
mask_lvl_start_index[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ | |
seg_size[lvl - 1] | |
num_grids[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ | |
self.num_grids[lvl] | |
strides[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ | |
self.strides[lvl] | |
lvl_start_index = lvl_start_index[inds[:, 0]] | |
mask_lvl_start_index = mask_lvl_start_index[inds[:, 0]] | |
num_grids = num_grids[inds[:, 0]] | |
strides = strides[inds[:, 0]] | |
y_lvl_offset = (inds[:, 0] - lvl_start_index) // num_grids | |
x_lvl_offset = (inds[:, 0] - lvl_start_index) % num_grids | |
y_inds = mask_lvl_start_index + y_lvl_offset | |
x_inds = mask_lvl_start_index + x_lvl_offset | |
cls_labels = inds[:, 1] | |
mask_preds = mask_preds_x[x_inds, ...] * mask_preds_y[y_inds, ...] | |
masks = mask_preds > cfg.mask_thr | |
sum_masks = masks.sum((1, 2)).float() | |
keep = sum_masks > strides | |
if keep.sum() == 0: | |
return empty_results(results, cls_scores) | |
masks = masks[keep] | |
mask_preds = mask_preds[keep] | |
sum_masks = sum_masks[keep] | |
cls_scores = cls_scores[keep] | |
cls_labels = cls_labels[keep] | |
# maskness. | |
mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks | |
cls_scores *= mask_scores | |
scores, labels, _, keep_inds = mask_matrix_nms( | |
masks, | |
cls_labels, | |
cls_scores, | |
mask_area=sum_masks, | |
nms_pre=cfg.nms_pre, | |
max_num=cfg.max_per_img, | |
kernel=cfg.kernel, | |
sigma=cfg.sigma, | |
filter_thr=cfg.filter_thr) | |
mask_preds = mask_preds[keep_inds] | |
mask_preds = F.interpolate( | |
mask_preds.unsqueeze(0), size=upsampled_size, | |
mode='bilinear')[:, :, :h, :w] | |
mask_preds = F.interpolate( | |
mask_preds, size=ori_shape[:2], mode='bilinear').squeeze(0) | |
masks = mask_preds > cfg.mask_thr | |
results.masks = masks | |
results.labels = labels | |
results.scores = scores | |
return results | |
class DecoupledSOLOLightHead(DecoupledSOLOHead): | |
"""Decoupled Light SOLO mask head used in `SOLO: Segmenting Objects by | |
Locations <https://arxiv.org/abs/1912.04488>`_ | |
Args: | |
with_dcn (bool): Whether use dcn in mask_convs and cls_convs, | |
default: False. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
*args, | |
dcn_cfg=None, | |
init_cfg=[ | |
dict(type='Normal', layer='Conv2d', std=0.01), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_mask_list_x')), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_mask_list_y')), | |
dict( | |
type='Normal', | |
std=0.01, | |
bias_prob=0.01, | |
override=dict(name='conv_cls')) | |
], | |
**kwargs): | |
assert dcn_cfg is None or isinstance(dcn_cfg, dict) | |
self.dcn_cfg = dcn_cfg | |
super(DecoupledSOLOLightHead, self).__init__( | |
*args, init_cfg=init_cfg, **kwargs) | |
def _init_layers(self): | |
self.mask_convs = nn.ModuleList() | |
self.cls_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
if self.dcn_cfg is not None\ | |
and i == self.stacked_convs - 1: | |
conv_cfg = self.dcn_cfg | |
else: | |
conv_cfg = None | |
chn = self.in_channels + 2 if i == 0 else self.feat_channels | |
self.mask_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.conv_mask_list_x = nn.ModuleList() | |
self.conv_mask_list_y = nn.ModuleList() | |
for num_grid in self.num_grids: | |
self.conv_mask_list_x.append( | |
nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) | |
self.conv_mask_list_y.append( | |
nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) | |
self.conv_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
def forward(self, feats): | |
assert len(feats) == self.num_levels | |
feats = self.resize_feats(feats) | |
mask_preds_x = [] | |
mask_preds_y = [] | |
cls_preds = [] | |
for i in range(self.num_levels): | |
x = feats[i] | |
mask_feat = x | |
cls_feat = x | |
# generate and concat the coordinate | |
coord_feat = generate_coordinate(mask_feat.size(), | |
mask_feat.device) | |
mask_feat = torch.cat([mask_feat, coord_feat], 1) | |
for mask_layer in self.mask_convs: | |
mask_feat = mask_layer(mask_feat) | |
mask_feat = F.interpolate( | |
mask_feat, scale_factor=2, mode='bilinear') | |
mask_pred_x = self.conv_mask_list_x[i](mask_feat) | |
mask_pred_y = self.conv_mask_list_y[i](mask_feat) | |
# cls branch | |
for j, cls_layer in enumerate(self.cls_convs): | |
if j == self.cls_down_index: | |
num_grid = self.num_grids[i] | |
cls_feat = F.interpolate( | |
cls_feat, size=num_grid, mode='bilinear') | |
cls_feat = cls_layer(cls_feat) | |
cls_pred = self.conv_cls(cls_feat) | |
if not self.training: | |
feat_wh = feats[0].size()[-2:] | |
upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) | |
mask_pred_x = F.interpolate( | |
mask_pred_x.sigmoid(), | |
size=upsampled_size, | |
mode='bilinear') | |
mask_pred_y = F.interpolate( | |
mask_pred_y.sigmoid(), | |
size=upsampled_size, | |
mode='bilinear') | |
cls_pred = cls_pred.sigmoid() | |
# get local maximum | |
local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) | |
keep_mask = local_max[:, :, :-1, :-1] == cls_pred | |
cls_pred = cls_pred * keep_mask | |
mask_preds_x.append(mask_pred_x) | |
mask_preds_y.append(mask_pred_y) | |
cls_preds.append(cls_pred) | |
return mask_preds_x, mask_preds_y, cls_preds | |