Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (build_assigner, build_bbox_coder, | |
build_prior_generator, build_sampler, multi_apply) | |
from ..builder import HEADS | |
from ..losses import smooth_l1_loss | |
from .anchor_head import AnchorHead | |
# TODO: add loss evaluator for SSD | |
class SSDHead(AnchorHead): | |
"""SSD head used in https://arxiv.org/abs/1512.02325. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
stacked_convs (int): Number of conv layers in cls and reg tower. | |
Default: 0. | |
feat_channels (int): Number of hidden channels when stacked_convs | |
> 0. Default: 256. | |
use_depthwise (bool): Whether to use DepthwiseSeparableConv. | |
Default: False. | |
conv_cfg (dict): Dictionary to construct and config conv layer. | |
Default: None. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Default: None. | |
act_cfg (dict): Dictionary to construct and config activation layer. | |
Default: None. | |
anchor_generator (dict): Config dict for anchor generator | |
bbox_coder (dict): Config of bounding box coder. | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Default False. It should be `True` when | |
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
train_cfg (dict): Training config of anchor head. | |
test_cfg (dict): Testing config of anchor head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" # noqa: W605 | |
def __init__(self, | |
num_classes=80, | |
in_channels=(512, 1024, 512, 256, 256, 256), | |
stacked_convs=0, | |
feat_channels=256, | |
use_depthwise=False, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=None, | |
anchor_generator=dict( | |
type='SSDAnchorGenerator', | |
scale_major=False, | |
input_size=300, | |
strides=[8, 16, 32, 64, 100, 300], | |
ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]), | |
basesize_ratio_range=(0.1, 0.9)), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
clip_border=True, | |
target_means=[.0, .0, .0, .0], | |
target_stds=[1.0, 1.0, 1.0, 1.0], | |
), | |
reg_decoded_bbox=False, | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=dict( | |
type='Xavier', | |
layer='Conv2d', | |
distribution='uniform', | |
bias=0)): | |
super(AnchorHead, self).__init__(init_cfg) | |
self.num_classes = num_classes | |
self.in_channels = in_channels | |
self.stacked_convs = stacked_convs | |
self.feat_channels = feat_channels | |
self.use_depthwise = use_depthwise | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.cls_out_channels = num_classes + 1 # add background class | |
self.prior_generator = build_prior_generator(anchor_generator) | |
# Usually the numbers of anchors for each level are the same | |
# except SSD detectors. So it is an int in the most dense | |
# heads but a list of int in SSDHead | |
self.num_base_priors = self.prior_generator.num_base_priors | |
self._init_layers() | |
self.bbox_coder = build_bbox_coder(bbox_coder) | |
self.reg_decoded_bbox = reg_decoded_bbox | |
self.use_sigmoid_cls = False | |
self.cls_focal_loss = False | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
# set sampling=False for archor_target | |
self.sampling = False | |
if self.train_cfg: | |
self.assigner = build_assigner(self.train_cfg.assigner) | |
# SSD sampling=False so use PseudoSampler | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.fp16_enabled = False | |
def num_anchors(self): | |
""" | |
Returns: | |
list[int]: Number of base_anchors on each point of each level. | |
""" | |
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' | |
'please use "num_base_priors" instead') | |
return self.num_base_priors | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
# TODO: Use registry to choose ConvModule type | |
conv = DepthwiseSeparableConvModule \ | |
if self.use_depthwise else ConvModule | |
for channel, num_base_priors in zip(self.in_channels, | |
self.num_base_priors): | |
cls_layers = [] | |
reg_layers = [] | |
in_channel = channel | |
# build stacked conv tower, not used in default ssd | |
for i in range(self.stacked_convs): | |
cls_layers.append( | |
conv( | |
in_channel, | |
self.feat_channels, | |
3, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
reg_layers.append( | |
conv( | |
in_channel, | |
self.feat_channels, | |
3, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
in_channel = self.feat_channels | |
# SSD-Lite head | |
if self.use_depthwise: | |
cls_layers.append( | |
ConvModule( | |
in_channel, | |
in_channel, | |
3, | |
padding=1, | |
groups=in_channel, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
reg_layers.append( | |
ConvModule( | |
in_channel, | |
in_channel, | |
3, | |
padding=1, | |
groups=in_channel, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
cls_layers.append( | |
nn.Conv2d( | |
in_channel, | |
num_base_priors * self.cls_out_channels, | |
kernel_size=1 if self.use_depthwise else 3, | |
padding=0 if self.use_depthwise else 1)) | |
reg_layers.append( | |
nn.Conv2d( | |
in_channel, | |
num_base_priors * 4, | |
kernel_size=1 if self.use_depthwise else 3, | |
padding=0 if self.use_depthwise else 1)) | |
self.cls_convs.append(nn.Sequential(*cls_layers)) | |
self.reg_convs.append(nn.Sequential(*reg_layers)) | |
def forward(self, feats): | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: | |
cls_scores (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_anchors * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_anchors * 4. | |
""" | |
cls_scores = [] | |
bbox_preds = [] | |
for feat, reg_conv, cls_conv in zip(feats, self.reg_convs, | |
self.cls_convs): | |
cls_scores.append(cls_conv(feat)) | |
bbox_preds.append(reg_conv(feat)) | |
return cls_scores, bbox_preds | |
def loss_single(self, cls_score, bbox_pred, anchor, labels, label_weights, | |
bbox_targets, bbox_weights, num_total_samples): | |
"""Compute loss of a single image. | |
Args: | |
cls_score (Tensor): Box scores for eachimage | |
Has shape (num_total_anchors, num_classes). | |
bbox_pred (Tensor): Box energies / deltas for each image | |
level with shape (num_total_anchors, 4). | |
anchors (Tensor): Box reference for each scale level with shape | |
(num_total_anchors, 4). | |
labels (Tensor): Labels of each anchors with shape | |
(num_total_anchors,). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(num_total_anchors,) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (num_total_anchors, 4). | |
bbox_weights (Tensor): BBox regression loss weights of each anchor | |
with shape (num_total_anchors, 4). | |
num_total_samples (int): If sampling, num total samples equal to | |
the number of total anchors; Otherwise, it is the number of | |
positive anchors. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
loss_cls_all = F.cross_entropy( | |
cls_score, labels, reduction='none') * label_weights | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( | |
as_tuple=False).reshape(-1) | |
neg_inds = (labels == self.num_classes).nonzero( | |
as_tuple=False).view(-1) | |
num_pos_samples = pos_inds.size(0) | |
num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples | |
if num_neg_samples > neg_inds.size(0): | |
num_neg_samples = neg_inds.size(0) | |
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) | |
loss_cls_pos = loss_cls_all[pos_inds].sum() | |
loss_cls_neg = topk_loss_cls_neg.sum() | |
loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples | |
if self.reg_decoded_bbox: | |
# When the regression loss (e.g. `IouLoss`, `GIouLoss`) | |
# is applied directly on the decoded bounding boxes, it | |
# decodes the already encoded coordinates to absolute format. | |
bbox_pred = self.bbox_coder.decode(anchor, bbox_pred) | |
loss_bbox = smooth_l1_loss( | |
bbox_pred, | |
bbox_targets, | |
bbox_weights, | |
beta=self.train_cfg.smoothl1_beta, | |
avg_factor=num_total_samples) | |
return loss_cls[None], loss_bbox | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
gt_bboxes (list[Tensor]): each item are the truth boxes for each | |
image in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=1, | |
unmap_outputs=True) | |
if cls_reg_targets is None: | |
return None | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg) = cls_reg_targets | |
num_images = len(img_metas) | |
all_cls_scores = torch.cat([ | |
s.permute(0, 2, 3, 1).reshape( | |
num_images, -1, self.cls_out_channels) for s in cls_scores | |
], 1) | |
all_labels = torch.cat(labels_list, -1).view(num_images, -1) | |
all_label_weights = torch.cat(label_weights_list, | |
-1).view(num_images, -1) | |
all_bbox_preds = torch.cat([ | |
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) | |
for b in bbox_preds | |
], -2) | |
all_bbox_targets = torch.cat(bbox_targets_list, | |
-2).view(num_images, -1, 4) | |
all_bbox_weights = torch.cat(bbox_weights_list, | |
-2).view(num_images, -1, 4) | |
# concat all level anchors to a single tensor | |
all_anchors = [] | |
for i in range(num_images): | |
all_anchors.append(torch.cat(anchor_list[i])) | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_single, | |
all_cls_scores, | |
all_bbox_preds, | |
all_anchors, | |
all_labels, | |
all_label_weights, | |
all_bbox_targets, | |
all_bbox_weights, | |
num_total_samples=num_total_pos) | |
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) | |