Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, | |
bias_init_with_prob) | |
from mmcv.ops.nms import batched_nms | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (MlvlPointGenerator, bbox_xyxy_to_cxcywh, | |
build_assigner, build_sampler, multi_apply, | |
reduce_mean) | |
from ..builder import HEADS, build_loss | |
from .base_dense_head import BaseDenseHead | |
from .dense_test_mixins import BBoxTestMixin | |
class YOLOXHead(BaseDenseHead, BBoxTestMixin): | |
"""YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels in stacking convs. | |
Default: 256 | |
stacked_convs (int): Number of stacking convs of the head. | |
Default: 2. | |
strides (tuple): Downsample factor of each feature map. | |
use_depthwise (bool): Whether to depthwise separable convolution in | |
blocks. Default: False | |
dcn_on_last_conv (bool): If true, use dcn in the last layer of | |
towers. Default: False. | |
conv_bias (bool | str): If specified as `auto`, it will be decided by | |
the norm_cfg. Bias of conv will be set as True if `norm_cfg` is | |
None, otherwise False. Default: "auto". | |
conv_cfg (dict): Config dict for convolution layer. Default: None. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (dict): Config dict for activation layer. Default: None. | |
loss_cls (dict): Config of classification loss. | |
loss_bbox (dict): Config of localization loss. | |
loss_obj (dict): Config of objectness loss. | |
loss_l1 (dict): Config of L1 loss. | |
train_cfg (dict): Training config of anchor head. | |
test_cfg (dict): Testing config of anchor head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels, | |
feat_channels=256, | |
stacked_convs=2, | |
strides=[8, 16, 32], | |
use_depthwise=False, | |
dcn_on_last_conv=False, | |
conv_bias='auto', | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_bbox=dict( | |
type='IoULoss', | |
mode='square', | |
eps=1e-16, | |
reduction='sum', | |
loss_weight=5.0), | |
loss_obj=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=dict( | |
type='Kaiming', | |
layer='Conv2d', | |
a=math.sqrt(5), | |
distribution='uniform', | |
mode='fan_in', | |
nonlinearity='leaky_relu')): | |
super().__init__(init_cfg=init_cfg) | |
self.num_classes = num_classes | |
self.cls_out_channels = num_classes | |
self.in_channels = in_channels | |
self.feat_channels = feat_channels | |
self.stacked_convs = stacked_convs | |
self.strides = strides | |
self.use_depthwise = use_depthwise | |
self.dcn_on_last_conv = dcn_on_last_conv | |
assert conv_bias == 'auto' or isinstance(conv_bias, bool) | |
self.conv_bias = conv_bias | |
self.use_sigmoid_cls = True | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.loss_cls = build_loss(loss_cls) | |
self.loss_bbox = build_loss(loss_bbox) | |
self.loss_obj = build_loss(loss_obj) | |
self.use_l1 = False # This flag will be modified by hooks. | |
self.loss_l1 = build_loss(loss_l1) | |
self.prior_generator = MlvlPointGenerator(strides, offset=0) | |
self.test_cfg = test_cfg | |
self.train_cfg = train_cfg | |
self.sampling = False | |
if self.train_cfg: | |
self.assigner = build_assigner(self.train_cfg.assigner) | |
# sampling=False so use PseudoSampler | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.fp16_enabled = False | |
self._init_layers() | |
def _init_layers(self): | |
self.multi_level_cls_convs = nn.ModuleList() | |
self.multi_level_reg_convs = nn.ModuleList() | |
self.multi_level_conv_cls = nn.ModuleList() | |
self.multi_level_conv_reg = nn.ModuleList() | |
self.multi_level_conv_obj = nn.ModuleList() | |
for _ in self.strides: | |
self.multi_level_cls_convs.append(self._build_stacked_convs()) | |
self.multi_level_reg_convs.append(self._build_stacked_convs()) | |
conv_cls, conv_reg, conv_obj = self._build_predictor() | |
self.multi_level_conv_cls.append(conv_cls) | |
self.multi_level_conv_reg.append(conv_reg) | |
self.multi_level_conv_obj.append(conv_obj) | |
def _build_stacked_convs(self): | |
"""Initialize conv layers of a single level head.""" | |
conv = DepthwiseSeparableConvModule \ | |
if self.use_depthwise else ConvModule | |
stacked_convs = [] | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
if self.dcn_on_last_conv and i == self.stacked_convs - 1: | |
conv_cfg = dict(type='DCNv2') | |
else: | |
conv_cfg = self.conv_cfg | |
stacked_convs.append( | |
conv( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
bias=self.conv_bias)) | |
return nn.Sequential(*stacked_convs) | |
def _build_predictor(self): | |
"""Initialize predictor layers of a single level head.""" | |
conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1) | |
conv_reg = nn.Conv2d(self.feat_channels, 4, 1) | |
conv_obj = nn.Conv2d(self.feat_channels, 1, 1) | |
return conv_cls, conv_reg, conv_obj | |
def init_weights(self): | |
super(YOLOXHead, self).init_weights() | |
# Use prior in model initialization to improve stability | |
bias_init = bias_init_with_prob(0.01) | |
for conv_cls, conv_obj in zip(self.multi_level_conv_cls, | |
self.multi_level_conv_obj): | |
conv_cls.bias.data.fill_(bias_init) | |
conv_obj.bias.data.fill_(bias_init) | |
def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg, | |
conv_obj): | |
"""Forward feature of a single scale level.""" | |
cls_feat = cls_convs(x) | |
reg_feat = reg_convs(x) | |
cls_score = conv_cls(cls_feat) | |
bbox_pred = conv_reg(reg_feat) | |
objectness = conv_obj(reg_feat) | |
return cls_score, bbox_pred, objectness | |
def forward(self, feats): | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple[Tensor]: A tuple of multi-level predication map, each is a | |
4D-tensor of shape (batch_size, 5+num_classes, height, width). | |
""" | |
return multi_apply(self.forward_single, feats, | |
self.multi_level_cls_convs, | |
self.multi_level_reg_convs, | |
self.multi_level_conv_cls, | |
self.multi_level_conv_reg, | |
self.multi_level_conv_obj) | |
def get_bboxes(self, | |
cls_scores, | |
bbox_preds, | |
objectnesses, | |
img_metas=None, | |
cfg=None, | |
rescale=False, | |
with_nms=True): | |
"""Transform network outputs of a batch into bbox results. | |
Args: | |
cls_scores (list[Tensor]): Classification scores for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * 4, H, W). | |
objectnesses (list[Tensor], Optional): Score factor for | |
all scale level, each is a 4D-tensor, has shape | |
(batch_size, 1, H, W). | |
img_metas (list[dict], Optional): Image meta info. Default None. | |
cfg (mmcv.Config, Optional): Test / postprocessing configuration, | |
if None, test_cfg would be used. Default None. | |
rescale (bool): If True, return boxes in original image space. | |
Default False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default True. | |
Returns: | |
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is an (n, 5) tensor, where the first 4 columns | |
are bounding box positions (tl_x, tl_y, br_x, br_y) and the | |
5-th column is a score between 0 and 1. The second item is a | |
(n,) tensor where each item is the predicted class label of | |
the corresponding box. | |
""" | |
assert len(cls_scores) == len(bbox_preds) == len(objectnesses) | |
cfg = self.test_cfg if cfg is None else cfg | |
scale_factors = np.array( | |
[img_meta['scale_factor'] for img_meta in img_metas]) | |
num_imgs = len(img_metas) | |
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] | |
mlvl_priors = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=cls_scores[0].dtype, | |
device=cls_scores[0].device, | |
with_stride=True) | |
# flatten cls_scores, bbox_preds and objectness | |
flatten_cls_scores = [ | |
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.cls_out_channels) | |
for cls_score in cls_scores | |
] | |
flatten_bbox_preds = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
for bbox_pred in bbox_preds | |
] | |
flatten_objectness = [ | |
objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) | |
for objectness in objectnesses | |
] | |
flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() | |
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) | |
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid() | |
flatten_priors = torch.cat(mlvl_priors) | |
flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) | |
if rescale: | |
flatten_bboxes[..., :4] /= flatten_bboxes.new_tensor( | |
scale_factors).unsqueeze(1) | |
result_list = [] | |
for img_id in range(len(img_metas)): | |
cls_scores = flatten_cls_scores[img_id] | |
score_factor = flatten_objectness[img_id] | |
bboxes = flatten_bboxes[img_id] | |
result_list.append( | |
self._bboxes_nms(cls_scores, bboxes, score_factor, cfg)) | |
return result_list | |
def _bbox_decode(self, priors, bbox_preds): | |
xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2] | |
whs = bbox_preds[..., 2:].exp() * priors[:, 2:] | |
tl_x = (xys[..., 0] - whs[..., 0] / 2) | |
tl_y = (xys[..., 1] - whs[..., 1] / 2) | |
br_x = (xys[..., 0] + whs[..., 0] / 2) | |
br_y = (xys[..., 1] + whs[..., 1] / 2) | |
decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) | |
return decoded_bboxes | |
def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg): | |
max_scores, labels = torch.max(cls_scores, 1) | |
valid_mask = score_factor * max_scores >= cfg.score_thr | |
bboxes = bboxes[valid_mask] | |
scores = max_scores[valid_mask] * score_factor[valid_mask] | |
labels = labels[valid_mask] | |
if labels.numel() == 0: | |
return bboxes, labels | |
else: | |
dets, keep = batched_nms(bboxes, scores, labels, cfg.nms) | |
return dets, labels[keep] | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
objectnesses, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute loss of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level, | |
each is a 4D-tensor, the channel number is | |
num_priors * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_priors * 4. | |
objectnesses (list[Tensor], Optional): Score factor for | |
all scale level, each is a 4D-tensor, has shape | |
(batch_size, 1, H, W). | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
""" | |
num_imgs = len(img_metas) | |
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] | |
mlvl_priors = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=cls_scores[0].dtype, | |
device=cls_scores[0].device, | |
with_stride=True) | |
flatten_cls_preds = [ | |
cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.cls_out_channels) | |
for cls_pred in cls_scores | |
] | |
flatten_bbox_preds = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
for bbox_pred in bbox_preds | |
] | |
flatten_objectness = [ | |
objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) | |
for objectness in objectnesses | |
] | |
flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1) | |
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) | |
flatten_objectness = torch.cat(flatten_objectness, dim=1) | |
flatten_priors = torch.cat(mlvl_priors) | |
flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) | |
(pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets, | |
num_fg_imgs) = multi_apply( | |
self._get_target_single, flatten_cls_preds.detach(), | |
flatten_objectness.detach(), | |
flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1), | |
flatten_bboxes.detach(), gt_bboxes, gt_labels) | |
# The experimental results show that ‘reduce_mean’ can improve | |
# performance on the COCO dataset. | |
num_pos = torch.tensor( | |
sum(num_fg_imgs), | |
dtype=torch.float, | |
device=flatten_cls_preds.device) | |
num_total_samples = max(reduce_mean(num_pos), 1.0) | |
pos_masks = torch.cat(pos_masks, 0) | |
cls_targets = torch.cat(cls_targets, 0) | |
obj_targets = torch.cat(obj_targets, 0) | |
bbox_targets = torch.cat(bbox_targets, 0) | |
if self.use_l1: | |
l1_targets = torch.cat(l1_targets, 0) | |
loss_bbox = self.loss_bbox( | |
flatten_bboxes.view(-1, 4)[pos_masks], | |
bbox_targets) / num_total_samples | |
loss_obj = self.loss_obj(flatten_objectness.view(-1, 1), | |
obj_targets) / num_total_samples | |
loss_cls = self.loss_cls( | |
flatten_cls_preds.view(-1, self.num_classes)[pos_masks], | |
cls_targets) / num_total_samples | |
loss_dict = dict( | |
loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj) | |
if self.use_l1: | |
loss_l1 = self.loss_l1( | |
flatten_bbox_preds.view(-1, 4)[pos_masks], | |
l1_targets) / num_total_samples | |
loss_dict.update(loss_l1=loss_l1) | |
return loss_dict | |
def _get_target_single(self, cls_preds, objectness, priors, decoded_bboxes, | |
gt_bboxes, gt_labels): | |
"""Compute classification, regression, and objectness targets for | |
priors in a single image. | |
Args: | |
cls_preds (Tensor): Classification predictions of one image, | |
a 2D-Tensor with shape [num_priors, num_classes] | |
objectness (Tensor): Objectness predictions of one image, | |
a 1D-Tensor with shape [num_priors] | |
priors (Tensor): All priors of one image, a 2D-Tensor with shape | |
[num_priors, 4] in [cx, xy, stride_w, stride_y] format. | |
decoded_bboxes (Tensor): Decoded bboxes predictions of one image, | |
a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y, | |
br_x, br_y] format. | |
gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor | |
with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (Tensor): Ground truth labels of one image, a Tensor | |
with shape [num_gts]. | |
""" | |
num_priors = priors.size(0) | |
num_gts = gt_labels.size(0) | |
gt_bboxes = gt_bboxes.to(decoded_bboxes.dtype) | |
# No target | |
if num_gts == 0: | |
cls_target = cls_preds.new_zeros((0, self.num_classes)) | |
bbox_target = cls_preds.new_zeros((0, 4)) | |
l1_target = cls_preds.new_zeros((0, 4)) | |
obj_target = cls_preds.new_zeros((num_priors, 1)) | |
foreground_mask = cls_preds.new_zeros(num_priors).bool() | |
return (foreground_mask, cls_target, obj_target, bbox_target, | |
l1_target, 0) | |
# YOLOX uses center priors with 0.5 offset to assign targets, | |
# but use center priors without offset to regress bboxes. | |
offset_priors = torch.cat( | |
[priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1) | |
assign_result = self.assigner.assign( | |
cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid(), | |
offset_priors, decoded_bboxes, gt_bboxes, gt_labels) | |
sampling_result = self.sampler.sample(assign_result, priors, gt_bboxes) | |
pos_inds = sampling_result.pos_inds | |
num_pos_per_img = pos_inds.size(0) | |
pos_ious = assign_result.max_overlaps[pos_inds] | |
# IOU aware classification score | |
cls_target = F.one_hot(sampling_result.pos_gt_labels, | |
self.num_classes) * pos_ious.unsqueeze(-1) | |
obj_target = torch.zeros_like(objectness).unsqueeze(-1) | |
obj_target[pos_inds] = 1 | |
bbox_target = sampling_result.pos_gt_bboxes | |
l1_target = cls_preds.new_zeros((num_pos_per_img, 4)) | |
if self.use_l1: | |
l1_target = self._get_l1_target(l1_target, bbox_target, | |
priors[pos_inds]) | |
foreground_mask = torch.zeros_like(objectness).to(torch.bool) | |
foreground_mask[pos_inds] = 1 | |
return (foreground_mask, cls_target, obj_target, bbox_target, | |
l1_target, num_pos_per_img) | |
def _get_l1_target(self, l1_target, gt_bboxes, priors, eps=1e-8): | |
"""Convert gt bboxes to center offset and log width height.""" | |
gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes) | |
l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:] | |
l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps) | |
return l1_target | |