Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import load_checkpoint | |
from ..builder import DETECTORS, build_backbone, build_head, build_neck | |
from .kd_one_stage import KnowledgeDistillationSingleStageDetector | |
class LAD(KnowledgeDistillationSingleStageDetector): | |
"""Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" | |
def __init__(self, | |
backbone, | |
neck, | |
bbox_head, | |
teacher_backbone, | |
teacher_neck, | |
teacher_bbox_head, | |
teacher_ckpt, | |
eval_teacher=True, | |
train_cfg=None, | |
test_cfg=None, | |
pretrained=None): | |
super(KnowledgeDistillationSingleStageDetector, | |
self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, | |
pretrained) | |
self.eval_teacher = eval_teacher | |
self.teacher_model = nn.Module() | |
self.teacher_model.backbone = build_backbone(teacher_backbone) | |
if teacher_neck is not None: | |
self.teacher_model.neck = build_neck(teacher_neck) | |
teacher_bbox_head.update(train_cfg=train_cfg) | |
teacher_bbox_head.update(test_cfg=test_cfg) | |
self.teacher_model.bbox_head = build_head(teacher_bbox_head) | |
if teacher_ckpt is not None: | |
load_checkpoint( | |
self.teacher_model, teacher_ckpt, map_location='cpu') | |
def with_teacher_neck(self): | |
"""bool: whether the detector has a teacher_neck""" | |
return hasattr(self.teacher_model, 'neck') and \ | |
self.teacher_model.neck is not None | |
def extract_teacher_feat(self, img): | |
"""Directly extract teacher features from the backbone+neck.""" | |
x = self.teacher_model.backbone(img) | |
if self.with_teacher_neck: | |
x = self.teacher_model.neck(x) | |
return x | |
def forward_train(self, | |
img, | |
img_metas, | |
gt_bboxes, | |
gt_labels, | |
gt_bboxes_ignore=None): | |
""" | |
Args: | |
img (Tensor): Input images of shape (N, C, H, W). | |
Typically these should be mean centered and std scaled. | |
img_metas (list[dict]): A List of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
:class:`mmdet.datasets.pipelines.Collect`. | |
gt_bboxes (list[Tensor]): Each item are the truth boxes for each | |
image in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): Class indices corresponding to each box | |
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
# get label assignment from the teacher | |
with torch.no_grad(): | |
x_teacher = self.extract_teacher_feat(img) | |
outs_teacher = self.teacher_model.bbox_head(x_teacher) | |
label_assignment_results = \ | |
self.teacher_model.bbox_head.get_label_assignment( | |
*outs_teacher, gt_bboxes, gt_labels, img_metas, | |
gt_bboxes_ignore) | |
# the student use the label assignment from the teacher to learn | |
x = self.extract_feat(img) | |
losses = self.bbox_head.forward_train(x, label_assignment_results, | |
img_metas, gt_bboxes, gt_labels, | |
gt_bboxes_ignore) | |
return losses | |