RockeyCoss
add code files”
51f6859
raw
history blame
2.93 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import PLUGIN_LAYERS
eps = 1e-6
@PLUGIN_LAYERS.register_module()
class DropBlock(nn.Module):
"""Randomly drop some regions of feature maps.
Please refer to the method proposed in `DropBlock
<https://arxiv.org/abs/1810.12890>`_ for details.
Args:
drop_prob (float): The probability of dropping each block.
block_size (int): The size of dropped blocks.
warmup_iters (int): The drop probability will linearly increase
from `0` to `drop_prob` during the first `warmup_iters` iterations.
Default: 2000.
"""
def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs):
super(DropBlock, self).__init__()
assert block_size % 2 == 1
assert 0 < drop_prob <= 1
assert warmup_iters >= 0
self.drop_prob = drop_prob
self.block_size = block_size
self.warmup_iters = warmup_iters
self.iter_cnt = 0
def forward(self, x):
"""
Args:
x (Tensor): Input feature map on which some areas will be randomly
dropped.
Returns:
Tensor: The tensor after DropBlock layer.
"""
if not self.training:
return x
self.iter_cnt += 1
N, C, H, W = list(x.shape)
gamma = self._compute_gamma((H, W))
mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1)
mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device))
mask = F.pad(mask, [self.block_size // 2] * 4, value=0)
mask = F.max_pool2d(
input=mask,
stride=(1, 1),
kernel_size=(self.block_size, self.block_size),
padding=self.block_size // 2)
mask = 1 - mask
x = x * mask * mask.numel() / (eps + mask.sum())
return x
def _compute_gamma(self, feat_size):
"""Compute the value of gamma according to paper. gamma is the
parameter of bernoulli distribution, which controls the number of
features to drop.
gamma = (drop_prob * fm_area) / (drop_area * keep_area)
Args:
feat_size (tuple[int, int]): The height and width of feature map.
Returns:
float: The value of gamma.
"""
gamma = (self.drop_prob * feat_size[0] * feat_size[1])
gamma /= ((feat_size[0] - self.block_size + 1) *
(feat_size[1] - self.block_size + 1))
gamma /= (self.block_size**2)
factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt /
self.warmup_iters)
return gamma * factor
def extra_repr(self):
return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, '
f'warmup_iters={self.warmup_iters}')