Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import ModuleList | |
from ..builder import HEADS | |
from ..utils import ConvUpsample | |
from .base_semantic_head import BaseSemanticHead | |
class PanopticFPNHead(BaseSemanticHead): | |
"""PanopticFPNHead used in Panoptic FPN. | |
In this head, the number of output channels is ``num_stuff_classes | |
+ 1``, including all stuff classes and one thing class. The stuff | |
classes will be reset from ``0`` to ``num_stuff_classes - 1``, the | |
thing classes will be merged to ``num_stuff_classes``-th channel. | |
Arg: | |
num_things_classes (int): Number of thing classes. Default: 80. | |
num_stuff_classes (int): Number of stuff classes. Default: 53. | |
num_classes (int): Number of classes, including all stuff | |
classes and one thing class. This argument is deprecated, | |
please use ``num_things_classes`` and ``num_stuff_classes``. | |
The module will automatically infer the num_classes by | |
``num_stuff_classes + 1``. | |
in_channels (int): Number of channels in the input feature | |
map. | |
inner_channels (int): Number of channels in inner features. | |
start_level (int): The start level of the input features | |
used in PanopticFPN. | |
end_level (int): The end level of the used features, the | |
``end_level``-th layer will not be used. | |
fg_range (tuple): Range of the foreground classes. It starts | |
from ``0`` to ``num_things_classes-1``. Deprecated, please use | |
``num_things_classes`` directly. | |
bg_range (tuple): Range of the background classes. It starts | |
from ``num_things_classes`` to ``num_things_classes + | |
num_stuff_classes - 1``. Deprecated, please use | |
``num_stuff_classes`` and ``num_things_classes`` directly. | |
conv_cfg (dict): Dictionary to construct and config | |
conv layer. Default: None. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Use ``GN`` by default. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
loss_seg (dict): the loss of the semantic head. | |
""" | |
def __init__(self, | |
num_things_classes=80, | |
num_stuff_classes=53, | |
num_classes=None, | |
in_channels=256, | |
inner_channels=128, | |
start_level=0, | |
end_level=4, | |
fg_range=None, | |
bg_range=None, | |
conv_cfg=None, | |
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), | |
init_cfg=None, | |
loss_seg=dict( | |
type='CrossEntropyLoss', ignore_index=-1, | |
loss_weight=1.0)): | |
if num_classes is not None: | |
warnings.warn( | |
'`num_classes` is deprecated now, please set ' | |
'`num_stuff_classes` directly, the `num_classes` will be ' | |
'set to `num_stuff_classes + 1`') | |
# num_classes = num_stuff_classes + 1 for PanopticFPN. | |
assert num_classes == num_stuff_classes + 1 | |
super(PanopticFPNHead, self).__init__(num_stuff_classes + 1, init_cfg, | |
loss_seg) | |
self.num_things_classes = num_things_classes | |
self.num_stuff_classes = num_stuff_classes | |
if fg_range is not None and bg_range is not None: | |
self.fg_range = fg_range | |
self.bg_range = bg_range | |
self.num_things_classes = fg_range[1] - fg_range[0] + 1 | |
self.num_stuff_classes = bg_range[1] - bg_range[0] + 1 | |
warnings.warn( | |
'`fg_range` and `bg_range` are deprecated now, ' | |
f'please use `num_things_classes`={self.num_things_classes} ' | |
f'and `num_stuff_classes`={self.num_stuff_classes} instead.') | |
# Used feature layers are [start_level, end_level) | |
self.start_level = start_level | |
self.end_level = end_level | |
self.num_stages = end_level - start_level | |
self.inner_channels = inner_channels | |
self.conv_upsample_layers = ModuleList() | |
for i in range(start_level, end_level): | |
self.conv_upsample_layers.append( | |
ConvUpsample( | |
in_channels, | |
inner_channels, | |
num_layers=i if i > 0 else 1, | |
num_upsample=i if i > 0 else 0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
)) | |
self.conv_logits = nn.Conv2d(inner_channels, self.num_classes, 1) | |
def _set_things_to_void(self, gt_semantic_seg): | |
"""Merge thing classes to one class. | |
In PanopticFPN, the background labels will be reset from `0` to | |
`self.num_stuff_classes-1`, the foreground labels will be merged to | |
`self.num_stuff_classes`-th channel. | |
""" | |
gt_semantic_seg = gt_semantic_seg.int() | |
fg_mask = gt_semantic_seg < self.num_things_classes | |
bg_mask = (gt_semantic_seg >= self.num_things_classes) * ( | |
gt_semantic_seg < self.num_things_classes + self.num_stuff_classes) | |
new_gt_seg = torch.clone(gt_semantic_seg) | |
new_gt_seg = torch.where(bg_mask, | |
gt_semantic_seg - self.num_things_classes, | |
new_gt_seg) | |
new_gt_seg = torch.where(fg_mask, | |
fg_mask.int() * self.num_stuff_classes, | |
new_gt_seg) | |
return new_gt_seg | |
def loss(self, seg_preds, gt_semantic_seg): | |
"""The loss of PanopticFPN head. | |
Things classes will be merged to one class in PanopticFPN. | |
""" | |
gt_semantic_seg = self._set_things_to_void(gt_semantic_seg) | |
return super().loss(seg_preds, gt_semantic_seg) | |
def init_weights(self): | |
super().init_weights() | |
nn.init.normal_(self.conv_logits.weight.data, 0, 0.01) | |
self.conv_logits.bias.data.zero_() | |
def forward(self, x): | |
# the number of subnets must be not more than | |
# the length of features. | |
assert self.num_stages <= len(x) | |
feats = [] | |
for i, layer in enumerate(self.conv_upsample_layers): | |
f = layer(x[self.start_level + i]) | |
feats.append(f) | |
feats = torch.sum(torch.stack(feats, dim=0), dim=0) | |
seg_preds = self.conv_logits(feats) | |
out = dict(seg_preds=seg_preds, feats=feats) | |
return out | |