Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import platform | |
import random | |
import warnings | |
from functools import partial | |
import numpy as np | |
import torch | |
from mmcv.parallel import collate | |
from mmcv.runner import get_dist_info | |
from mmcv.utils import TORCH_VERSION, Registry, build_from_cfg, digit_version | |
from torch.utils.data import DataLoader | |
from .samplers import (ClassAwareSampler, DistributedGroupSampler, | |
DistributedSampler, GroupSampler, InfiniteBatchSampler, | |
InfiniteGroupBatchSampler) | |
if platform.system() != 'Windows': | |
# https://github.com/pytorch/pytorch/issues/973 | |
import resource | |
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
base_soft_limit = rlimit[0] | |
hard_limit = rlimit[1] | |
soft_limit = min(max(4096, base_soft_limit), hard_limit) | |
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) | |
DATASETS = Registry('dataset') | |
PIPELINES = Registry('pipeline') | |
def _concat_dataset(cfg, default_args=None): | |
from .dataset_wrappers import ConcatDataset | |
ann_files = cfg['ann_file'] | |
img_prefixes = cfg.get('img_prefix', None) | |
seg_prefixes = cfg.get('seg_prefix', None) | |
proposal_files = cfg.get('proposal_file', None) | |
separate_eval = cfg.get('separate_eval', True) | |
datasets = [] | |
num_dset = len(ann_files) | |
for i in range(num_dset): | |
data_cfg = copy.deepcopy(cfg) | |
# pop 'separate_eval' since it is not a valid key for common datasets. | |
if 'separate_eval' in data_cfg: | |
data_cfg.pop('separate_eval') | |
data_cfg['ann_file'] = ann_files[i] | |
if isinstance(img_prefixes, (list, tuple)): | |
data_cfg['img_prefix'] = img_prefixes[i] | |
if isinstance(seg_prefixes, (list, tuple)): | |
data_cfg['seg_prefix'] = seg_prefixes[i] | |
if isinstance(proposal_files, (list, tuple)): | |
data_cfg['proposal_file'] = proposal_files[i] | |
datasets.append(build_dataset(data_cfg, default_args)) | |
return ConcatDataset(datasets, separate_eval) | |
def build_dataset(cfg, default_args=None): | |
from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, | |
MultiImageMixDataset, RepeatDataset) | |
if isinstance(cfg, (list, tuple)): | |
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) | |
elif cfg['type'] == 'ConcatDataset': | |
dataset = ConcatDataset( | |
[build_dataset(c, default_args) for c in cfg['datasets']], | |
cfg.get('separate_eval', True)) | |
elif cfg['type'] == 'RepeatDataset': | |
dataset = RepeatDataset( | |
build_dataset(cfg['dataset'], default_args), cfg['times']) | |
elif cfg['type'] == 'ClassBalancedDataset': | |
dataset = ClassBalancedDataset( | |
build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) | |
elif cfg['type'] == 'MultiImageMixDataset': | |
cp_cfg = copy.deepcopy(cfg) | |
cp_cfg['dataset'] = build_dataset(cp_cfg['dataset']) | |
cp_cfg.pop('type') | |
dataset = MultiImageMixDataset(**cp_cfg) | |
elif isinstance(cfg.get('ann_file'), (list, tuple)): | |
dataset = _concat_dataset(cfg, default_args) | |
else: | |
dataset = build_from_cfg(cfg, DATASETS, default_args) | |
return dataset | |
def build_dataloader(dataset, | |
samples_per_gpu, | |
workers_per_gpu, | |
num_gpus=1, | |
dist=True, | |
shuffle=True, | |
seed=None, | |
runner_type='EpochBasedRunner', | |
persistent_workers=False, | |
class_aware_sampler=None, | |
**kwargs): | |
"""Build PyTorch DataLoader. | |
In distributed training, each GPU/process has a dataloader. | |
In non-distributed training, there is only one dataloader for all GPUs. | |
Args: | |
dataset (Dataset): A PyTorch dataset. | |
samples_per_gpu (int): Number of training samples on each GPU, i.e., | |
batch size of each GPU. | |
workers_per_gpu (int): How many subprocesses to use for data loading | |
for each GPU. | |
num_gpus (int): Number of GPUs. Only used in non-distributed training. | |
dist (bool): Distributed training/test or not. Default: True. | |
shuffle (bool): Whether to shuffle the data at every epoch. | |
Default: True. | |
seed (int, Optional): Seed to be used. Default: None. | |
runner_type (str): Type of runner. Default: `EpochBasedRunner` | |
persistent_workers (bool): If True, the data loader will not shutdown | |
the worker processes after a dataset has been consumed once. | |
This allows to maintain the workers `Dataset` instances alive. | |
This argument is only valid when PyTorch>=1.7.0. Default: False. | |
class_aware_sampler (dict): Whether to use `ClassAwareSampler` | |
during training. Default: None. | |
kwargs: any keyword argument to be used to initialize DataLoader | |
Returns: | |
DataLoader: A PyTorch dataloader. | |
""" | |
rank, world_size = get_dist_info() | |
if dist: | |
# When model is :obj:`DistributedDataParallel`, | |
# `batch_size` of :obj:`dataloader` is the | |
# number of training samples on each GPU. | |
batch_size = samples_per_gpu | |
num_workers = workers_per_gpu | |
else: | |
# When model is obj:`DataParallel` | |
# the batch size is samples on all the GPUS | |
batch_size = num_gpus * samples_per_gpu | |
num_workers = num_gpus * workers_per_gpu | |
if runner_type == 'IterBasedRunner': | |
# this is a batch sampler, which can yield | |
# a mini-batch indices each time. | |
# it can be used in both `DataParallel` and | |
# `DistributedDataParallel` | |
if shuffle: | |
batch_sampler = InfiniteGroupBatchSampler( | |
dataset, batch_size, world_size, rank, seed=seed) | |
else: | |
batch_sampler = InfiniteBatchSampler( | |
dataset, | |
batch_size, | |
world_size, | |
rank, | |
seed=seed, | |
shuffle=False) | |
batch_size = 1 | |
sampler = None | |
else: | |
if class_aware_sampler is not None: | |
# ClassAwareSampler can be used in both distributed and | |
# non-distributed training. | |
num_sample_class = class_aware_sampler.get('num_sample_class', 1) | |
sampler = ClassAwareSampler( | |
dataset, | |
samples_per_gpu, | |
world_size, | |
rank, | |
seed=seed, | |
num_sample_class=num_sample_class) | |
elif dist: | |
# DistributedGroupSampler will definitely shuffle the data to | |
# satisfy that images on each GPU are in the same group | |
if shuffle: | |
sampler = DistributedGroupSampler( | |
dataset, samples_per_gpu, world_size, rank, seed=seed) | |
else: | |
sampler = DistributedSampler( | |
dataset, world_size, rank, shuffle=False, seed=seed) | |
else: | |
sampler = GroupSampler(dataset, | |
samples_per_gpu) if shuffle else None | |
batch_sampler = None | |
init_fn = partial( | |
worker_init_fn, num_workers=num_workers, rank=rank, | |
seed=seed) if seed is not None else None | |
if (TORCH_VERSION != 'parrots' | |
and digit_version(TORCH_VERSION) >= digit_version('1.7.0')): | |
kwargs['persistent_workers'] = persistent_workers | |
elif persistent_workers is True: | |
warnings.warn('persistent_workers is invalid because your pytorch ' | |
'version is lower than 1.7.0') | |
data_loader = DataLoader( | |
dataset, | |
batch_size=batch_size, | |
sampler=sampler, | |
num_workers=num_workers, | |
batch_sampler=batch_sampler, | |
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), | |
pin_memory=kwargs.pop('pin_memory', False), | |
worker_init_fn=init_fn, | |
**kwargs) | |
return data_loader | |
def worker_init_fn(worker_id, num_workers, rank, seed): | |
# The seed of each worker equals to | |
# num_worker * rank + worker_id + user_seed | |
worker_seed = num_workers * rank + worker_id + seed | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
torch.manual_seed(worker_seed) | |