RockeyCoss
add code files”
51f6859
raw
history blame
9.17 kB
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
from mmcv.fileio import load
from mmcv.utils import print_log
from pycocotools import mask as coco_mask
from terminaltables import AsciiTable
from .builder import DATASETS
from .coco import CocoDataset
@DATASETS.register_module()
class OccludedSeparatedCocoDataset(CocoDataset):
"""COCO dataset with evaluation on separated and occluded masks which
presented in paper `A Tri-Layer Plugin to Improve Occluded Detection.
<https://arxiv.org/abs/2210.10046>`_.
Separated COCO and Occluded COCO are automatically generated subsets of
COCO val dataset, collecting separated objects and partially occluded
objects for a large variety of categories. In this way, we define
occlusion into two major categories: separated and partially occluded.
- Separation: target object segmentation mask is separated into distinct
regions by the occluder.
- Partial Occlusion: target object is partially occluded but the
segmentation mask is connected.
These two new scalable real-image datasets are to benchmark a model's
capability to detect occluded objects of 80 common categories.
Please cite the paper if you use this dataset:
@article{zhan2022triocc,
title={A Tri-Layer Plugin to Improve Occluded Detection},
author={Zhan, Guanqi and Xie, Weidi and Zisserman, Andrew},
journal={British Machine Vision Conference},
year={2022}
}
Args:
occluded_ann (str): Path to the occluded coco annotation file.
separated_ann (str): Path to the separated coco annotation file.
""" # noqa
def __init__(
self,
*args,
occluded_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/occluded_coco.pkl', # noqa
separated_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/separated_coco.pkl', # noqa
**kwargs):
super().__init__(*args, **kwargs)
# load from local file
if osp.isfile(occluded_ann) and not osp.isabs(occluded_ann):
occluded_ann = osp.join(self.data_root, occluded_ann)
if osp.isfile(separated_ann) and not osp.isabs(separated_ann):
separated_ann = osp.join(self.data_root, separated_ann)
self.occluded_ann = load(occluded_ann)
self.separated_ann = load(separated_ann)
def evaluate(self,
results,
metric=[],
score_thr=0.3,
iou_thr=0.75,
**kwargs):
"""Occluded and separated mask evaluation in COCO protocol.
Args:
results (list[tuple]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. Options are
'bbox', 'segm', 'proposal', 'proposal_fast'. Defaults to [].
score_thr (float): Score threshold of the detection masks.
Defaults to 0.3.
iou_thr (float): IoU threshold for the recall calculation.
Defaults to 0.75.
Returns:
dict[str, float]: The recall of occluded and separated masks and
COCO style evaluation metric.
"""
coco_metric_res = super().evaluate(results, metric=metric, **kwargs)
eval_res = self.evaluate_occluded_separated(results, score_thr,
iou_thr)
coco_metric_res.update(eval_res)
return coco_metric_res
def evaluate_occluded_separated(self,
results,
score_thr=0.3,
iou_thr=0.75):
"""Compute the recall of occluded and separated masks.
Args:
results (list[tuple]): Testing results of the dataset.
score_thr (float): Score threshold of the detection masks.
Defaults to 0.3.
iou_thr (float): IoU threshold for the recall calculation.
Defaults to 0.75.
Returns:
dict[str, float]: The recall of occluded and separated masks.
"""
dict_det = {}
print_log('processing detection results...')
prog_bar = mmcv.ProgressBar(len(results))
for i in range(len(results)):
cur_img_name = self.data_infos[i]['filename']
if cur_img_name not in dict_det.keys():
dict_det[cur_img_name] = []
for cat_id in range(len(results[i][1])):
assert len(results[i][1][cat_id]) == len(results[i][0][cat_id])
for instance_id in range(len(results[i][1][cat_id])):
cur_binary_mask = coco_mask.decode(
results[i][1][cat_id][instance_id])
cur_det_bbox = results[i][0][cat_id][instance_id][:4]
dict_det[cur_img_name].append([
results[i][0][cat_id][instance_id][4],
self.CLASSES[cat_id], cur_binary_mask, cur_det_bbox
])
dict_det[cur_img_name].sort(
key=lambda x: (-x[0], x[3][0], x[3][1])
) # rank by confidence from high to low, avoid same confidence
prog_bar.update()
print_log('\ncomputing occluded mask recall...')
occluded_correct_num, occluded_recall = self.compute_recall(
dict_det,
gt_ann=self.occluded_ann,
score_thr=score_thr,
iou_thr=iou_thr,
is_occ=True)
print_log(f'\nCOCO occluded mask recall: {occluded_recall:.2f}%')
print_log(f'COCO occluded mask success num: {occluded_correct_num}')
print_log('computing separated mask recall...')
separated_correct_num, separated_recall = self.compute_recall(
dict_det,
gt_ann=self.separated_ann,
score_thr=score_thr,
iou_thr=iou_thr,
is_occ=False)
print_log(f'\nCOCO separated mask recall: {separated_recall:.2f}%')
print_log(f'COCO separated mask success num: {separated_correct_num}')
table_data = [
['mask type', 'recall', 'num correct'],
['occluded', f'{occluded_recall:.2f}%', occluded_correct_num],
['separated', f'{separated_recall:.2f}%', separated_correct_num]
]
table = AsciiTable(table_data)
print_log('\n' + table.table)
return dict(
occluded_recall=occluded_recall, separated_recall=separated_recall)
def compute_recall(self,
result_dict,
gt_ann,
score_thr=0.3,
iou_thr=0.75,
is_occ=True):
"""Compute the recall of occluded or separated masks.
Args:
results (list[tuple]): Testing results of the dataset.
gt_ann (list): Occluded or separated coco annotations.
score_thr (float): Score threshold of the detection masks.
Defaults to 0.3.
iou_thr (float): IoU threshold for the recall calculation.
Defaults to 0.75.
is_occ (bool): Whether the annotation is occluded mask.
Defaults to True.
Returns:
tuple: number of correct masks and the recall.
"""
correct = 0
prog_bar = mmcv.ProgressBar(len(gt_ann))
for iter_i in range(len(gt_ann)):
cur_item = gt_ann[iter_i]
cur_img_name = cur_item[0]
cur_gt_bbox = cur_item[3]
if is_occ:
cur_gt_bbox = [
cur_gt_bbox[0], cur_gt_bbox[1],
cur_gt_bbox[0] + cur_gt_bbox[2],
cur_gt_bbox[1] + cur_gt_bbox[3]
]
cur_gt_class = cur_item[1]
cur_gt_mask = coco_mask.decode(cur_item[4])
assert cur_img_name in result_dict.keys()
cur_detections = result_dict[cur_img_name]
correct_flag = False
for i in range(len(cur_detections)):
cur_det_confidence = cur_detections[i][0]
if cur_det_confidence < score_thr:
break
cur_det_class = cur_detections[i][1]
if cur_det_class != cur_gt_class:
continue
cur_det_mask = cur_detections[i][2]
cur_iou = self.mask_iou(cur_det_mask, cur_gt_mask)
if cur_iou >= iou_thr:
correct_flag = True
break
if correct_flag:
correct += 1
prog_bar.update()
recall = correct / len(gt_ann) * 100
return correct, recall
def mask_iou(self, mask1, mask2):
"""Compute IoU between two masks."""
mask1_area = np.count_nonzero(mask1 == 1)
mask2_area = np.count_nonzero(mask2 == 1)
intersection = np.count_nonzero(np.logical_and(mask1 == 1, mask2 == 1))
iou = intersection / (mask1_area + mask2_area - intersection)
return iou