Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import inspect | |
import math | |
import warnings | |
import cv2 | |
import mmcv | |
import numpy as np | |
from numpy import random | |
from mmdet.core import BitmapMasks, PolygonMasks, find_inside_bboxes | |
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps | |
from mmdet.utils import log_img_scale | |
from ..builder import PIPELINES | |
try: | |
from imagecorruptions import corrupt | |
except ImportError: | |
corrupt = None | |
try: | |
import albumentations | |
from albumentations import Compose | |
except ImportError: | |
albumentations = None | |
Compose = None | |
class Resize: | |
"""Resize images & bbox & mask. | |
This transform resizes the input image to some scale. Bboxes and masks are | |
then resized with the same scale factor. If the input dict contains the key | |
"scale", then the scale in the input dict is used, otherwise the specified | |
scale in the init method is used. If the input dict contains the key | |
"scale_factor" (if MultiScaleFlipAug does not give img_scale but | |
scale_factor), the actual scale will be computed by image shape and | |
scale_factor. | |
`img_scale` can either be a tuple (single-scale) or a list of tuple | |
(multi-scale). There are 3 multiscale modes: | |
- ``ratio_range is not None``: randomly sample a ratio from the ratio \ | |
range and multiply it with the image scale. | |
- ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \ | |
sample a scale from the multiscale range. | |
- ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \ | |
sample a scale from multiple scales. | |
Args: | |
img_scale (tuple or list[tuple]): Images scales for resizing. | |
multiscale_mode (str): Either "range" or "value". | |
ratio_range (tuple[float]): (min_ratio, max_ratio) | |
keep_ratio (bool): Whether to keep the aspect ratio when resizing the | |
image. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
backend (str): Image resize backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. Defaults | |
to 'cv2'. | |
interpolation (str): Interpolation method, accepted values are | |
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' | |
backend, "nearest", "bilinear" for 'pillow' backend. | |
override (bool, optional): Whether to override `scale` and | |
`scale_factor` so as to call resize twice. Default False. If True, | |
after the first resizing, the existed `scale` and `scale_factor` | |
will be ignored so the second resizing can be allowed. | |
This option is a work-around for multiple times of resize in DETR. | |
Defaults to False. | |
""" | |
def __init__(self, | |
img_scale=None, | |
multiscale_mode='range', | |
ratio_range=None, | |
keep_ratio=True, | |
bbox_clip_border=True, | |
backend='cv2', | |
interpolation='bilinear', | |
override=False): | |
if img_scale is None: | |
self.img_scale = None | |
else: | |
if isinstance(img_scale, list): | |
self.img_scale = img_scale | |
else: | |
self.img_scale = [img_scale] | |
assert mmcv.is_list_of(self.img_scale, tuple) | |
if ratio_range is not None: | |
# mode 1: given a scale and a range of image ratio | |
assert len(self.img_scale) == 1 | |
else: | |
# mode 2: given multiple scales or a range of scales | |
assert multiscale_mode in ['value', 'range'] | |
self.backend = backend | |
self.multiscale_mode = multiscale_mode | |
self.ratio_range = ratio_range | |
self.keep_ratio = keep_ratio | |
# TODO: refactor the override option in Resize | |
self.interpolation = interpolation | |
self.override = override | |
self.bbox_clip_border = bbox_clip_border | |
def random_select(img_scales): | |
"""Randomly select an img_scale from given candidates. | |
Args: | |
img_scales (list[tuple]): Images scales for selection. | |
Returns: | |
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \ | |
where ``img_scale`` is the selected image scale and \ | |
``scale_idx`` is the selected index in the given candidates. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) | |
scale_idx = np.random.randint(len(img_scales)) | |
img_scale = img_scales[scale_idx] | |
return img_scale, scale_idx | |
def random_sample(img_scales): | |
"""Randomly sample an img_scale when ``multiscale_mode=='range'``. | |
Args: | |
img_scales (list[tuple]): Images scale range for sampling. | |
There must be two tuples in img_scales, which specify the lower | |
and upper bound of image scales. | |
Returns: | |
(tuple, None): Returns a tuple ``(img_scale, None)``, where \ | |
``img_scale`` is sampled scale and None is just a placeholder \ | |
to be consistent with :func:`random_select`. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 | |
img_scale_long = [max(s) for s in img_scales] | |
img_scale_short = [min(s) for s in img_scales] | |
long_edge = np.random.randint( | |
min(img_scale_long), | |
max(img_scale_long) + 1) | |
short_edge = np.random.randint( | |
min(img_scale_short), | |
max(img_scale_short) + 1) | |
img_scale = (long_edge, short_edge) | |
return img_scale, None | |
def random_sample_ratio(img_scale, ratio_range): | |
"""Randomly sample an img_scale when ``ratio_range`` is specified. | |
A ratio will be randomly sampled from the range specified by | |
``ratio_range``. Then it would be multiplied with ``img_scale`` to | |
generate sampled scale. | |
Args: | |
img_scale (tuple): Images scale base to multiply with ratio. | |
ratio_range (tuple[float]): The minimum and maximum ratio to scale | |
the ``img_scale``. | |
Returns: | |
(tuple, None): Returns a tuple ``(scale, None)``, where \ | |
``scale`` is sampled ratio multiplied with ``img_scale`` and \ | |
None is just a placeholder to be consistent with \ | |
:func:`random_select`. | |
""" | |
assert isinstance(img_scale, tuple) and len(img_scale) == 2 | |
min_ratio, max_ratio = ratio_range | |
assert min_ratio <= max_ratio | |
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio | |
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) | |
return scale, None | |
def _random_scale(self, results): | |
"""Randomly sample an img_scale according to ``ratio_range`` and | |
``multiscale_mode``. | |
If ``ratio_range`` is specified, a ratio will be sampled and be | |
multiplied with ``img_scale``. | |
If multiple scales are specified by ``img_scale``, a scale will be | |
sampled according to ``multiscale_mode``. | |
Otherwise, single scale will be used. | |
Args: | |
results (dict): Result dict from :obj:`dataset`. | |
Returns: | |
dict: Two new keys 'scale` and 'scale_idx` are added into \ | |
``results``, which would be used by subsequent pipelines. | |
""" | |
if self.ratio_range is not None: | |
scale, scale_idx = self.random_sample_ratio( | |
self.img_scale[0], self.ratio_range) | |
elif len(self.img_scale) == 1: | |
scale, scale_idx = self.img_scale[0], 0 | |
elif self.multiscale_mode == 'range': | |
scale, scale_idx = self.random_sample(self.img_scale) | |
elif self.multiscale_mode == 'value': | |
scale, scale_idx = self.random_select(self.img_scale) | |
else: | |
raise NotImplementedError | |
results['scale'] = scale | |
results['scale_idx'] = scale_idx | |
def _resize_img(self, results): | |
"""Resize images with ``results['scale']``.""" | |
for key in results.get('img_fields', ['img']): | |
if self.keep_ratio: | |
img, scale_factor = mmcv.imrescale( | |
results[key], | |
results['scale'], | |
return_scale=True, | |
interpolation=self.interpolation, | |
backend=self.backend) | |
# the w_scale and h_scale has minor difference | |
# a real fix should be done in the mmcv.imrescale in the future | |
new_h, new_w = img.shape[:2] | |
h, w = results[key].shape[:2] | |
w_scale = new_w / w | |
h_scale = new_h / h | |
else: | |
img, w_scale, h_scale = mmcv.imresize( | |
results[key], | |
results['scale'], | |
return_scale=True, | |
interpolation=self.interpolation, | |
backend=self.backend) | |
results[key] = img | |
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], | |
dtype=np.float32) | |
results['img_shape'] = img.shape | |
# in case that there is no padding | |
results['pad_shape'] = img.shape | |
results['scale_factor'] = scale_factor | |
results['keep_ratio'] = self.keep_ratio | |
def _resize_bboxes(self, results): | |
"""Resize bounding boxes with ``results['scale_factor']``.""" | |
for key in results.get('bbox_fields', []): | |
bboxes = results[key] * results['scale_factor'] | |
if self.bbox_clip_border: | |
img_shape = results['img_shape'] | |
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) | |
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) | |
results[key] = bboxes | |
def _resize_masks(self, results): | |
"""Resize masks with ``results['scale']``""" | |
for key in results.get('mask_fields', []): | |
if results[key] is None: | |
continue | |
if self.keep_ratio: | |
results[key] = results[key].rescale(results['scale']) | |
else: | |
results[key] = results[key].resize(results['img_shape'][:2]) | |
def _resize_seg(self, results): | |
"""Resize semantic segmentation map with ``results['scale']``.""" | |
for key in results.get('seg_fields', []): | |
if self.keep_ratio: | |
gt_seg = mmcv.imrescale( | |
results[key], | |
results['scale'], | |
interpolation='nearest', | |
backend=self.backend) | |
else: | |
gt_seg = mmcv.imresize( | |
results[key], | |
results['scale'], | |
interpolation='nearest', | |
backend=self.backend) | |
results[key] = gt_seg | |
def __call__(self, results): | |
"""Call function to resize images, bounding boxes, masks, semantic | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \ | |
'keep_ratio' keys are added into result dict. | |
""" | |
if 'scale' not in results: | |
if 'scale_factor' in results: | |
img_shape = results['img'].shape[:2] | |
scale_factor = results['scale_factor'] | |
assert isinstance(scale_factor, float) | |
results['scale'] = tuple( | |
[int(x * scale_factor) for x in img_shape][::-1]) | |
else: | |
self._random_scale(results) | |
else: | |
if not self.override: | |
assert 'scale_factor' not in results, ( | |
'scale and scale_factor cannot be both set.') | |
else: | |
results.pop('scale') | |
if 'scale_factor' in results: | |
results.pop('scale_factor') | |
self._random_scale(results) | |
self._resize_img(results) | |
self._resize_bboxes(results) | |
self._resize_masks(results) | |
self._resize_seg(results) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(img_scale={self.img_scale}, ' | |
repr_str += f'multiscale_mode={self.multiscale_mode}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'keep_ratio={self.keep_ratio}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class RandomFlip: | |
"""Flip the image & bbox & mask. | |
If the input dict contains the key "flip", then the flag will be used, | |
otherwise it will be randomly decided by a ratio specified in the init | |
method. | |
When random flip is enabled, ``flip_ratio``/``direction`` can either be a | |
float/string or tuple of float/string. There are 3 flip modes: | |
- ``flip_ratio`` is float, ``direction`` is string: the image will be | |
``direction``ly flipped with probability of ``flip_ratio`` . | |
E.g., ``flip_ratio=0.5``, ``direction='horizontal'``, | |
then image will be horizontally flipped with probability of 0.5. | |
- ``flip_ratio`` is float, ``direction`` is list of string: the image will | |
be ``direction[i]``ly flipped with probability of | |
``flip_ratio/len(direction)``. | |
E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``, | |
then image will be horizontally flipped with probability of 0.25, | |
vertically with probability of 0.25. | |
- ``flip_ratio`` is list of float, ``direction`` is list of string: | |
given ``len(flip_ratio) == len(direction)``, the image will | |
be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``. | |
E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal', | |
'vertical']``, then image will be horizontally flipped with probability | |
of 0.3, vertically with probability of 0.5. | |
Args: | |
flip_ratio (float | list[float], optional): The flipping probability. | |
Default: None. | |
direction(str | list[str], optional): The flipping direction. Options | |
are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'. | |
If input is a list, the length must equal ``flip_ratio``. Each | |
element in ``flip_ratio`` indicates the flip probability of | |
corresponding direction. | |
""" | |
def __init__(self, flip_ratio=None, direction='horizontal'): | |
if isinstance(flip_ratio, list): | |
assert mmcv.is_list_of(flip_ratio, float) | |
assert 0 <= sum(flip_ratio) <= 1 | |
elif isinstance(flip_ratio, float): | |
assert 0 <= flip_ratio <= 1 | |
elif flip_ratio is None: | |
pass | |
else: | |
raise ValueError('flip_ratios must be None, float, ' | |
'or list of float') | |
self.flip_ratio = flip_ratio | |
valid_directions = ['horizontal', 'vertical', 'diagonal'] | |
if isinstance(direction, str): | |
assert direction in valid_directions | |
elif isinstance(direction, list): | |
assert mmcv.is_list_of(direction, str) | |
assert set(direction).issubset(set(valid_directions)) | |
else: | |
raise ValueError('direction must be either str or list of str') | |
self.direction = direction | |
if isinstance(flip_ratio, list): | |
assert len(self.flip_ratio) == len(self.direction) | |
def bbox_flip(self, bboxes, img_shape, direction): | |
"""Flip bboxes horizontally. | |
Args: | |
bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k) | |
img_shape (tuple[int]): Image shape (height, width) | |
direction (str): Flip direction. Options are 'horizontal', | |
'vertical'. | |
Returns: | |
numpy.ndarray: Flipped bounding boxes. | |
""" | |
assert bboxes.shape[-1] % 4 == 0 | |
flipped = bboxes.copy() | |
if direction == 'horizontal': | |
w = img_shape[1] | |
flipped[..., 0::4] = w - bboxes[..., 2::4] | |
flipped[..., 2::4] = w - bboxes[..., 0::4] | |
elif direction == 'vertical': | |
h = img_shape[0] | |
flipped[..., 1::4] = h - bboxes[..., 3::4] | |
flipped[..., 3::4] = h - bboxes[..., 1::4] | |
elif direction == 'diagonal': | |
w = img_shape[1] | |
h = img_shape[0] | |
flipped[..., 0::4] = w - bboxes[..., 2::4] | |
flipped[..., 1::4] = h - bboxes[..., 3::4] | |
flipped[..., 2::4] = w - bboxes[..., 0::4] | |
flipped[..., 3::4] = h - bboxes[..., 1::4] | |
else: | |
raise ValueError(f"Invalid flipping direction '{direction}'") | |
return flipped | |
def __call__(self, results): | |
"""Call function to flip bounding boxes, masks, semantic segmentation | |
maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Flipped results, 'flip', 'flip_direction' keys are added \ | |
into result dict. | |
""" | |
if 'flip' not in results: | |
if isinstance(self.direction, list): | |
# None means non-flip | |
direction_list = self.direction + [None] | |
else: | |
# None means non-flip | |
direction_list = [self.direction, None] | |
if isinstance(self.flip_ratio, list): | |
non_flip_ratio = 1 - sum(self.flip_ratio) | |
flip_ratio_list = self.flip_ratio + [non_flip_ratio] | |
else: | |
non_flip_ratio = 1 - self.flip_ratio | |
# exclude non-flip | |
single_ratio = self.flip_ratio / (len(direction_list) - 1) | |
flip_ratio_list = [single_ratio] * (len(direction_list) - | |
1) + [non_flip_ratio] | |
cur_dir = np.random.choice(direction_list, p=flip_ratio_list) | |
results['flip'] = cur_dir is not None | |
if 'flip_direction' not in results: | |
results['flip_direction'] = cur_dir | |
if results['flip']: | |
# flip image | |
for key in results.get('img_fields', ['img']): | |
results[key] = mmcv.imflip( | |
results[key], direction=results['flip_direction']) | |
# flip bboxes | |
for key in results.get('bbox_fields', []): | |
results[key] = self.bbox_flip(results[key], | |
results['img_shape'], | |
results['flip_direction']) | |
# flip masks | |
for key in results.get('mask_fields', []): | |
results[key] = results[key].flip(results['flip_direction']) | |
# flip segs | |
for key in results.get('seg_fields', []): | |
results[key] = mmcv.imflip( | |
results[key], direction=results['flip_direction']) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})' | |
class RandomShift: | |
"""Shift the image and box given shift pixels and probability. | |
Args: | |
shift_ratio (float): Probability of shifts. Default 0.5. | |
max_shift_px (int): The max pixels for shifting. Default 32. | |
filter_thr_px (int): The width and height threshold for filtering. | |
The bbox and the rest of the targets below the width and | |
height threshold will be filtered. Default 1. | |
""" | |
def __init__(self, shift_ratio=0.5, max_shift_px=32, filter_thr_px=1): | |
assert 0 <= shift_ratio <= 1 | |
assert max_shift_px >= 0 | |
self.shift_ratio = shift_ratio | |
self.max_shift_px = max_shift_px | |
self.filter_thr_px = int(filter_thr_px) | |
# The key correspondence from bboxes to labels. | |
self.bbox2label = { | |
'gt_bboxes': 'gt_labels', | |
'gt_bboxes_ignore': 'gt_labels_ignore' | |
} | |
def __call__(self, results): | |
"""Call function to random shift images, bounding boxes. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Shift results. | |
""" | |
if random.random() < self.shift_ratio: | |
img_shape = results['img'].shape[:2] | |
random_shift_x = random.randint(-self.max_shift_px, | |
self.max_shift_px) | |
random_shift_y = random.randint(-self.max_shift_px, | |
self.max_shift_px) | |
new_x = max(0, random_shift_x) | |
ori_x = max(0, -random_shift_x) | |
new_y = max(0, random_shift_y) | |
ori_y = max(0, -random_shift_y) | |
# TODO: support mask and semantic segmentation maps. | |
for key in results.get('bbox_fields', []): | |
bboxes = results[key].copy() | |
bboxes[..., 0::2] += random_shift_x | |
bboxes[..., 1::2] += random_shift_y | |
# clip border | |
bboxes[..., 0::2] = np.clip(bboxes[..., 0::2], 0, img_shape[1]) | |
bboxes[..., 1::2] = np.clip(bboxes[..., 1::2], 0, img_shape[0]) | |
# remove invalid bboxes | |
bbox_w = bboxes[..., 2] - bboxes[..., 0] | |
bbox_h = bboxes[..., 3] - bboxes[..., 1] | |
valid_inds = (bbox_w > self.filter_thr_px) & ( | |
bbox_h > self.filter_thr_px) | |
# If the shift does not contain any gt-bbox area, skip this | |
# image. | |
if key == 'gt_bboxes' and not valid_inds.any(): | |
return results | |
bboxes = bboxes[valid_inds] | |
results[key] = bboxes | |
# label fields. e.g. gt_labels and gt_labels_ignore | |
label_key = self.bbox2label.get(key) | |
if label_key in results: | |
results[label_key] = results[label_key][valid_inds] | |
for key in results.get('img_fields', ['img']): | |
img = results[key] | |
new_img = np.zeros_like(img) | |
img_h, img_w = img.shape[:2] | |
new_h = img_h - np.abs(random_shift_y) | |
new_w = img_w - np.abs(random_shift_x) | |
new_img[new_y:new_y + new_h, new_x:new_x + new_w] \ | |
= img[ori_y:ori_y + new_h, ori_x:ori_x + new_w] | |
results[key] = new_img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(max_shift_px={self.max_shift_px}, ' | |
return repr_str | |
class Pad: | |
"""Pad the image & masks & segmentation map. | |
There are two padding modes: (1) pad to a fixed size and (2) pad to the | |
minimum size that is divisible by some number. | |
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", | |
Args: | |
size (tuple, optional): Fixed padding size. | |
size_divisor (int, optional): The divisor of padded size. | |
pad_to_square (bool): Whether to pad the image into a square. | |
Currently only used for YOLOX. Default: False. | |
pad_val (dict, optional): A dict for padding value, the default | |
value is `dict(img=0, masks=0, seg=255)`. | |
""" | |
def __init__(self, | |
size=None, | |
size_divisor=None, | |
pad_to_square=False, | |
pad_val=dict(img=0, masks=0, seg=255)): | |
self.size = size | |
self.size_divisor = size_divisor | |
if isinstance(pad_val, float) or isinstance(pad_val, int): | |
warnings.warn( | |
'pad_val of float type is deprecated now, ' | |
f'please use pad_val=dict(img={pad_val}, ' | |
f'masks={pad_val}, seg=255) instead.', DeprecationWarning) | |
pad_val = dict(img=pad_val, masks=pad_val, seg=255) | |
assert isinstance(pad_val, dict) | |
self.pad_val = pad_val | |
self.pad_to_square = pad_to_square | |
if pad_to_square: | |
assert size is None and size_divisor is None, \ | |
'The size and size_divisor must be None ' \ | |
'when pad2square is True' | |
else: | |
assert size is not None or size_divisor is not None, \ | |
'only one of size and size_divisor should be valid' | |
assert size is None or size_divisor is None | |
def _pad_img(self, results): | |
"""Pad images according to ``self.size``.""" | |
pad_val = self.pad_val.get('img', 0) | |
for key in results.get('img_fields', ['img']): | |
if self.pad_to_square: | |
max_size = max(results[key].shape[:2]) | |
self.size = (max_size, max_size) | |
if self.size is not None: | |
padded_img = mmcv.impad( | |
results[key], shape=self.size, pad_val=pad_val) | |
elif self.size_divisor is not None: | |
padded_img = mmcv.impad_to_multiple( | |
results[key], self.size_divisor, pad_val=pad_val) | |
results[key] = padded_img | |
results['pad_shape'] = padded_img.shape | |
results['pad_fixed_size'] = self.size | |
results['pad_size_divisor'] = self.size_divisor | |
def _pad_masks(self, results): | |
"""Pad masks according to ``results['pad_shape']``.""" | |
pad_shape = results['pad_shape'][:2] | |
pad_val = self.pad_val.get('masks', 0) | |
for key in results.get('mask_fields', []): | |
results[key] = results[key].pad(pad_shape, pad_val=pad_val) | |
def _pad_seg(self, results): | |
"""Pad semantic segmentation map according to | |
``results['pad_shape']``.""" | |
pad_val = self.pad_val.get('seg', 255) | |
for key in results.get('seg_fields', []): | |
results[key] = mmcv.impad( | |
results[key], shape=results['pad_shape'][:2], pad_val=pad_val) | |
def __call__(self, results): | |
"""Call function to pad images, masks, semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Updated result dict. | |
""" | |
self._pad_img(results) | |
self._pad_masks(results) | |
self._pad_seg(results) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(size={self.size}, ' | |
repr_str += f'size_divisor={self.size_divisor}, ' | |
repr_str += f'pad_to_square={self.pad_to_square}, ' | |
repr_str += f'pad_val={self.pad_val})' | |
return repr_str | |
class Normalize: | |
"""Normalize the image. | |
Added key is "img_norm_cfg". | |
Args: | |
mean (sequence): Mean values of 3 channels. | |
std (sequence): Std values of 3 channels. | |
to_rgb (bool): Whether to convert the image from BGR to RGB, | |
default is true. | |
""" | |
def __init__(self, mean, std, to_rgb=True): | |
self.mean = np.array(mean, dtype=np.float32) | |
self.std = np.array(std, dtype=np.float32) | |
self.to_rgb = to_rgb | |
def __call__(self, results): | |
"""Call function to normalize images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Normalized results, 'img_norm_cfg' key is added into | |
result dict. | |
""" | |
for key in results.get('img_fields', ['img']): | |
results[key] = mmcv.imnormalize(results[key], self.mean, self.std, | |
self.to_rgb) | |
results['img_norm_cfg'] = dict( | |
mean=self.mean, std=self.std, to_rgb=self.to_rgb) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})' | |
return repr_str | |
class RandomCrop: | |
"""Random crop the image & bboxes & masks. | |
The absolute `crop_size` is sampled based on `crop_type` and `image_size`, | |
then the cropped results are generated. | |
Args: | |
crop_size (tuple): The relative ratio or absolute pixels of | |
height and width. | |
crop_type (str, optional): one of "relative_range", "relative", | |
"absolute", "absolute_range". "relative" randomly crops | |
(h * crop_size[0], w * crop_size[1]) part from an input of size | |
(h, w). "relative_range" uniformly samples relative crop size from | |
range [crop_size[0], 1] and [crop_size[1], 1] for height and width | |
respectively. "absolute" crops from an input with absolute size | |
(crop_size[0], crop_size[1]). "absolute_range" uniformly samples | |
crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w | |
in range [crop_size[0], min(w, crop_size[1])]. Default "absolute". | |
allow_negative_crop (bool, optional): Whether to allow a crop that does | |
not contain any bbox area. Default False. | |
recompute_bbox (bool, optional): Whether to re-compute the boxes based | |
on cropped instance masks. Default False. | |
bbox_clip_border (bool, optional): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
Note: | |
- If the image is smaller than the absolute crop size, return the | |
original image. | |
- The keys for bboxes, labels and masks must be aligned. That is, | |
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and | |
`gt_bboxes_ignore` corresponds to `gt_labels_ignore` and | |
`gt_masks_ignore`. | |
- If the crop does not contain any gt-bbox region and | |
`allow_negative_crop` is set to False, skip this image. | |
""" | |
def __init__(self, | |
crop_size, | |
crop_type='absolute', | |
allow_negative_crop=False, | |
recompute_bbox=False, | |
bbox_clip_border=True): | |
if crop_type not in [ | |
'relative_range', 'relative', 'absolute', 'absolute_range' | |
]: | |
raise ValueError(f'Invalid crop_type {crop_type}.') | |
if crop_type in ['absolute', 'absolute_range']: | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
assert isinstance(crop_size[0], int) and isinstance( | |
crop_size[1], int) | |
else: | |
assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1 | |
self.crop_size = crop_size | |
self.crop_type = crop_type | |
self.allow_negative_crop = allow_negative_crop | |
self.bbox_clip_border = bbox_clip_border | |
self.recompute_bbox = recompute_bbox | |
# The key correspondence from bboxes to labels and masks. | |
self.bbox2label = { | |
'gt_bboxes': 'gt_labels', | |
'gt_bboxes_ignore': 'gt_labels_ignore' | |
} | |
self.bbox2mask = { | |
'gt_bboxes': 'gt_masks', | |
'gt_bboxes_ignore': 'gt_masks_ignore' | |
} | |
def _crop_data(self, results, crop_size, allow_negative_crop): | |
"""Function to randomly crop images, bounding boxes, masks, semantic | |
segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
crop_size (tuple): Expected absolute size after cropping, (h, w). | |
allow_negative_crop (bool): Whether to allow a crop that does not | |
contain any bbox area. Default to False. | |
Returns: | |
dict: Randomly cropped results, 'img_shape' key in result dict is | |
updated according to crop size. | |
""" | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
for key in results.get('img_fields', ['img']): | |
img = results[key] | |
margin_h = max(img.shape[0] - crop_size[0], 0) | |
margin_w = max(img.shape[1] - crop_size[1], 0) | |
offset_h = np.random.randint(0, margin_h + 1) | |
offset_w = np.random.randint(0, margin_w + 1) | |
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] | |
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] | |
# crop the image | |
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] | |
img_shape = img.shape | |
results[key] = img | |
results['img_shape'] = img_shape | |
# crop bboxes accordingly and clip to the image boundary | |
for key in results.get('bbox_fields', []): | |
# e.g. gt_bboxes and gt_bboxes_ignore | |
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h], | |
dtype=np.float32) | |
bboxes = results[key] - bbox_offset | |
if self.bbox_clip_border: | |
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) | |
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) | |
valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & ( | |
bboxes[:, 3] > bboxes[:, 1]) | |
# If the crop does not contain any gt-bbox area and | |
# allow_negative_crop is False, skip this image. | |
if (key == 'gt_bboxes' and not valid_inds.any() | |
and not allow_negative_crop): | |
return None | |
results[key] = bboxes[valid_inds, :] | |
# label fields. e.g. gt_labels and gt_labels_ignore | |
label_key = self.bbox2label.get(key) | |
if label_key in results: | |
results[label_key] = results[label_key][valid_inds] | |
# mask fields, e.g. gt_masks and gt_masks_ignore | |
mask_key = self.bbox2mask.get(key) | |
if mask_key in results: | |
results[mask_key] = results[mask_key][ | |
valid_inds.nonzero()[0]].crop( | |
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) | |
if self.recompute_bbox: | |
results[key] = results[mask_key].get_bboxes() | |
# crop semantic seg | |
for key in results.get('seg_fields', []): | |
results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2] | |
return results | |
def _get_crop_size(self, image_size): | |
"""Randomly generates the absolute crop size based on `crop_type` and | |
`image_size`. | |
Args: | |
image_size (tuple): (h, w). | |
Returns: | |
crop_size (tuple): (crop_h, crop_w) in absolute pixels. | |
""" | |
h, w = image_size | |
if self.crop_type == 'absolute': | |
return (min(self.crop_size[0], h), min(self.crop_size[1], w)) | |
elif self.crop_type == 'absolute_range': | |
assert self.crop_size[0] <= self.crop_size[1] | |
crop_h = np.random.randint( | |
min(h, self.crop_size[0]), | |
min(h, self.crop_size[1]) + 1) | |
crop_w = np.random.randint( | |
min(w, self.crop_size[0]), | |
min(w, self.crop_size[1]) + 1) | |
return crop_h, crop_w | |
elif self.crop_type == 'relative': | |
crop_h, crop_w = self.crop_size | |
return int(h * crop_h + 0.5), int(w * crop_w + 0.5) | |
elif self.crop_type == 'relative_range': | |
crop_size = np.asarray(self.crop_size, dtype=np.float32) | |
crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size) | |
return int(h * crop_h + 0.5), int(w * crop_w + 0.5) | |
def __call__(self, results): | |
"""Call function to randomly crop images, bounding boxes, masks, | |
semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Randomly cropped results, 'img_shape' key in result dict is | |
updated according to crop size. | |
""" | |
image_size = results['img'].shape[:2] | |
crop_size = self._get_crop_size(image_size) | |
results = self._crop_data(results, crop_size, self.allow_negative_crop) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(crop_size={self.crop_size}, ' | |
repr_str += f'crop_type={self.crop_type}, ' | |
repr_str += f'allow_negative_crop={self.allow_negative_crop}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class SegRescale: | |
"""Rescale semantic segmentation maps. | |
Args: | |
scale_factor (float): The scale factor of the final output. | |
backend (str): Image rescale backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. Defaults | |
to 'cv2'. | |
""" | |
def __init__(self, scale_factor=1, backend='cv2'): | |
self.scale_factor = scale_factor | |
self.backend = backend | |
def __call__(self, results): | |
"""Call function to scale the semantic segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with semantic segmentation map scaled. | |
""" | |
for key in results.get('seg_fields', []): | |
if self.scale_factor != 1: | |
results[key] = mmcv.imrescale( | |
results[key], | |
self.scale_factor, | |
interpolation='nearest', | |
backend=self.backend) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' | |
class PhotoMetricDistortion: | |
"""Apply photometric distortion to image sequentially, every transformation | |
is applied with a probability of 0.5. The position of random contrast is in | |
second or second to last. | |
1. random brightness | |
2. random contrast (mode 0) | |
3. convert color from BGR to HSV | |
4. random saturation | |
5. random hue | |
6. convert color from HSV to BGR | |
7. random contrast (mode 1) | |
8. randomly swap channels | |
Args: | |
brightness_delta (int): delta of brightness. | |
contrast_range (tuple): range of contrast. | |
saturation_range (tuple): range of saturation. | |
hue_delta (int): delta of hue. | |
""" | |
def __init__(self, | |
brightness_delta=32, | |
contrast_range=(0.5, 1.5), | |
saturation_range=(0.5, 1.5), | |
hue_delta=18): | |
self.brightness_delta = brightness_delta | |
self.contrast_lower, self.contrast_upper = contrast_range | |
self.saturation_lower, self.saturation_upper = saturation_range | |
self.hue_delta = hue_delta | |
def __call__(self, results): | |
"""Call function to perform photometric distortion on images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images distorted. | |
""" | |
if 'img_fields' in results: | |
assert results['img_fields'] == ['img'], \ | |
'Only single img_fields is allowed' | |
img = results['img'] | |
img = img.astype(np.float32) | |
# random brightness | |
if random.randint(2): | |
delta = random.uniform(-self.brightness_delta, | |
self.brightness_delta) | |
img += delta | |
# mode == 0 --> do random contrast first | |
# mode == 1 --> do random contrast last | |
mode = random.randint(2) | |
if mode == 1: | |
if random.randint(2): | |
alpha = random.uniform(self.contrast_lower, | |
self.contrast_upper) | |
img *= alpha | |
# convert color from BGR to HSV | |
img = mmcv.bgr2hsv(img) | |
# random saturation | |
if random.randint(2): | |
img[..., 1] *= random.uniform(self.saturation_lower, | |
self.saturation_upper) | |
# random hue | |
if random.randint(2): | |
img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) | |
img[..., 0][img[..., 0] > 360] -= 360 | |
img[..., 0][img[..., 0] < 0] += 360 | |
# convert color from HSV to BGR | |
img = mmcv.hsv2bgr(img) | |
# random contrast | |
if mode == 0: | |
if random.randint(2): | |
alpha = random.uniform(self.contrast_lower, | |
self.contrast_upper) | |
img *= alpha | |
# randomly swap channels | |
if random.randint(2): | |
img = img[..., random.permutation(3)] | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' | |
repr_str += 'contrast_range=' | |
repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' | |
repr_str += 'saturation_range=' | |
repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' | |
repr_str += f'hue_delta={self.hue_delta})' | |
return repr_str | |
class Expand: | |
"""Random expand the image & bboxes. | |
Randomly place the original image on a canvas of 'ratio' x original image | |
size filled with mean values. The ratio is in the range of ratio_range. | |
Args: | |
mean (tuple): mean value of dataset. | |
to_rgb (bool): if need to convert the order of mean to align with RGB. | |
ratio_range (tuple): range of expand ratio. | |
prob (float): probability of applying this transformation | |
""" | |
def __init__(self, | |
mean=(0, 0, 0), | |
to_rgb=True, | |
ratio_range=(1, 4), | |
seg_ignore_label=None, | |
prob=0.5): | |
self.to_rgb = to_rgb | |
self.ratio_range = ratio_range | |
if to_rgb: | |
self.mean = mean[::-1] | |
else: | |
self.mean = mean | |
self.min_ratio, self.max_ratio = ratio_range | |
self.seg_ignore_label = seg_ignore_label | |
self.prob = prob | |
def __call__(self, results): | |
"""Call function to expand images, bounding boxes. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images, bounding boxes expanded | |
""" | |
if random.uniform(0, 1) > self.prob: | |
return results | |
if 'img_fields' in results: | |
assert results['img_fields'] == ['img'], \ | |
'Only single img_fields is allowed' | |
img = results['img'] | |
h, w, c = img.shape | |
ratio = random.uniform(self.min_ratio, self.max_ratio) | |
# speedup expand when meets large image | |
if np.all(self.mean == self.mean[0]): | |
expand_img = np.empty((int(h * ratio), int(w * ratio), c), | |
img.dtype) | |
expand_img.fill(self.mean[0]) | |
else: | |
expand_img = np.full((int(h * ratio), int(w * ratio), c), | |
self.mean, | |
dtype=img.dtype) | |
left = int(random.uniform(0, w * ratio - w)) | |
top = int(random.uniform(0, h * ratio - h)) | |
expand_img[top:top + h, left:left + w] = img | |
results['img'] = expand_img | |
# expand bboxes | |
for key in results.get('bbox_fields', []): | |
results[key] = results[key] + np.tile( | |
(left, top), 2).astype(results[key].dtype) | |
# expand masks | |
for key in results.get('mask_fields', []): | |
results[key] = results[key].expand( | |
int(h * ratio), int(w * ratio), top, left) | |
# expand segs | |
for key in results.get('seg_fields', []): | |
gt_seg = results[key] | |
expand_gt_seg = np.full((int(h * ratio), int(w * ratio)), | |
self.seg_ignore_label, | |
dtype=gt_seg.dtype) | |
expand_gt_seg[top:top + h, left:left + w] = gt_seg | |
results[key] = expand_gt_seg | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'seg_ignore_label={self.seg_ignore_label})' | |
return repr_str | |
class MinIoURandomCrop: | |
"""Random crop the image & bboxes, the cropped patches have minimum IoU | |
requirement with original image & bboxes, the IoU threshold is randomly | |
selected from min_ious. | |
Args: | |
min_ious (tuple): minimum IoU threshold for all intersections with | |
bounding boxes | |
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, | |
where a >= min_crop_size). | |
bbox_clip_border (bool, optional): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
Note: | |
The keys for bboxes, labels and masks should be paired. That is, \ | |
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ | |
`gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. | |
""" | |
def __init__(self, | |
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), | |
min_crop_size=0.3, | |
bbox_clip_border=True): | |
# 1: return ori img | |
self.min_ious = min_ious | |
self.sample_mode = (1, *min_ious, 0) | |
self.min_crop_size = min_crop_size | |
self.bbox_clip_border = bbox_clip_border | |
self.bbox2label = { | |
'gt_bboxes': 'gt_labels', | |
'gt_bboxes_ignore': 'gt_labels_ignore' | |
} | |
self.bbox2mask = { | |
'gt_bboxes': 'gt_masks', | |
'gt_bboxes_ignore': 'gt_masks_ignore' | |
} | |
def __call__(self, results): | |
"""Call function to crop images and bounding boxes with minimum IoU | |
constraint. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images and bounding boxes cropped, \ | |
'img_shape' key is updated. | |
""" | |
if 'img_fields' in results: | |
assert results['img_fields'] == ['img'], \ | |
'Only single img_fields is allowed' | |
img = results['img'] | |
assert 'bbox_fields' in results | |
boxes = [results[key] for key in results['bbox_fields']] | |
boxes = np.concatenate(boxes, 0) | |
h, w, c = img.shape | |
while True: | |
mode = random.choice(self.sample_mode) | |
self.mode = mode | |
if mode == 1: | |
return results | |
min_iou = mode | |
for i in range(50): | |
new_w = random.uniform(self.min_crop_size * w, w) | |
new_h = random.uniform(self.min_crop_size * h, h) | |
# h / w in [0.5, 2] | |
if new_h / new_w < 0.5 or new_h / new_w > 2: | |
continue | |
left = random.uniform(w - new_w) | |
top = random.uniform(h - new_h) | |
patch = np.array( | |
(int(left), int(top), int(left + new_w), int(top + new_h))) | |
# Line or point crop is not allowed | |
if patch[2] == patch[0] or patch[3] == patch[1]: | |
continue | |
overlaps = bbox_overlaps( | |
patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) | |
if len(overlaps) > 0 and overlaps.min() < min_iou: | |
continue | |
# center of boxes should inside the crop img | |
# only adjust boxes and instance masks when the gt is not empty | |
if len(overlaps) > 0: | |
# adjust boxes | |
def is_center_of_bboxes_in_patch(boxes, patch): | |
center = (boxes[:, :2] + boxes[:, 2:]) / 2 | |
mask = ((center[:, 0] > patch[0]) * | |
(center[:, 1] > patch[1]) * | |
(center[:, 0] < patch[2]) * | |
(center[:, 1] < patch[3])) | |
return mask | |
mask = is_center_of_bboxes_in_patch(boxes, patch) | |
if not mask.any(): | |
continue | |
for key in results.get('bbox_fields', []): | |
boxes = results[key].copy() | |
mask = is_center_of_bboxes_in_patch(boxes, patch) | |
boxes = boxes[mask] | |
if self.bbox_clip_border: | |
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) | |
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) | |
boxes -= np.tile(patch[:2], 2) | |
results[key] = boxes | |
# labels | |
label_key = self.bbox2label.get(key) | |
if label_key in results: | |
results[label_key] = results[label_key][mask] | |
# mask fields | |
mask_key = self.bbox2mask.get(key) | |
if mask_key in results: | |
results[mask_key] = results[mask_key][ | |
mask.nonzero()[0]].crop(patch) | |
# adjust the img no matter whether the gt is empty before crop | |
img = img[patch[1]:patch[3], patch[0]:patch[2]] | |
results['img'] = img | |
results['img_shape'] = img.shape | |
# seg fields | |
for key in results.get('seg_fields', []): | |
results[key] = results[key][patch[1]:patch[3], | |
patch[0]:patch[2]] | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(min_ious={self.min_ious}, ' | |
repr_str += f'min_crop_size={self.min_crop_size}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class Corrupt: | |
"""Corruption augmentation. | |
Corruption transforms implemented based on | |
`imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_. | |
Args: | |
corruption (str): Corruption name. | |
severity (int, optional): The severity of corruption. Default: 1. | |
""" | |
def __init__(self, corruption, severity=1): | |
self.corruption = corruption | |
self.severity = severity | |
def __call__(self, results): | |
"""Call function to corrupt image. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images corrupted. | |
""" | |
if corrupt is None: | |
raise RuntimeError('imagecorruptions is not installed') | |
if 'img_fields' in results: | |
assert results['img_fields'] == ['img'], \ | |
'Only single img_fields is allowed' | |
results['img'] = corrupt( | |
results['img'].astype(np.uint8), | |
corruption_name=self.corruption, | |
severity=self.severity) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(corruption={self.corruption}, ' | |
repr_str += f'severity={self.severity})' | |
return repr_str | |
class Albu: | |
"""Albumentation augmentation. | |
Adds custom transformations from Albumentations library. | |
Please, visit `https://albumentations.readthedocs.io` | |
to get more information. | |
An example of ``transforms`` is as followed: | |
.. code-block:: | |
[ | |
dict( | |
type='ShiftScaleRotate', | |
shift_limit=0.0625, | |
scale_limit=0.0, | |
rotate_limit=0, | |
interpolation=1, | |
p=0.5), | |
dict( | |
type='RandomBrightnessContrast', | |
brightness_limit=[0.1, 0.3], | |
contrast_limit=[0.1, 0.3], | |
p=0.2), | |
dict(type='ChannelShuffle', p=0.1), | |
dict( | |
type='OneOf', | |
transforms=[ | |
dict(type='Blur', blur_limit=3, p=1.0), | |
dict(type='MedianBlur', blur_limit=3, p=1.0) | |
], | |
p=0.1), | |
] | |
Args: | |
transforms (list[dict]): A list of albu transformations | |
bbox_params (dict): Bbox_params for albumentation `Compose` | |
keymap (dict): Contains {'input key':'albumentation-style key'} | |
skip_img_without_anno (bool): Whether to skip the image if no ann left | |
after aug | |
""" | |
def __init__(self, | |
transforms, | |
bbox_params=None, | |
keymap=None, | |
update_pad_shape=False, | |
skip_img_without_anno=False): | |
if Compose is None: | |
raise RuntimeError('albumentations is not installed') | |
# Args will be modified later, copying it will be safer | |
transforms = copy.deepcopy(transforms) | |
if bbox_params is not None: | |
bbox_params = copy.deepcopy(bbox_params) | |
if keymap is not None: | |
keymap = copy.deepcopy(keymap) | |
self.transforms = transforms | |
self.filter_lost_elements = False | |
self.update_pad_shape = update_pad_shape | |
self.skip_img_without_anno = skip_img_without_anno | |
# A simple workaround to remove masks without boxes | |
if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params | |
and 'filter_lost_elements' in bbox_params): | |
self.filter_lost_elements = True | |
self.origin_label_fields = bbox_params['label_fields'] | |
bbox_params['label_fields'] = ['idx_mapper'] | |
del bbox_params['filter_lost_elements'] | |
self.bbox_params = ( | |
self.albu_builder(bbox_params) if bbox_params else None) | |
self.aug = Compose([self.albu_builder(t) for t in self.transforms], | |
bbox_params=self.bbox_params) | |
if not keymap: | |
self.keymap_to_albu = { | |
'img': 'image', | |
'gt_masks': 'masks', | |
'gt_bboxes': 'bboxes' | |
} | |
else: | |
self.keymap_to_albu = keymap | |
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} | |
def albu_builder(self, cfg): | |
"""Import a module from albumentations. | |
It inherits some of :func:`build_from_cfg` logic. | |
Args: | |
cfg (dict): Config dict. It should at least contain the key "type". | |
Returns: | |
obj: The constructed object. | |
""" | |
assert isinstance(cfg, dict) and 'type' in cfg | |
args = cfg.copy() | |
obj_type = args.pop('type') | |
if mmcv.is_str(obj_type): | |
if albumentations is None: | |
raise RuntimeError('albumentations is not installed') | |
obj_cls = getattr(albumentations, obj_type) | |
elif inspect.isclass(obj_type): | |
obj_cls = obj_type | |
else: | |
raise TypeError( | |
f'type must be a str or valid type, but got {type(obj_type)}') | |
if 'transforms' in args: | |
args['transforms'] = [ | |
self.albu_builder(transform) | |
for transform in args['transforms'] | |
] | |
return obj_cls(**args) | |
def mapper(d, keymap): | |
"""Dictionary mapper. Renames keys according to keymap provided. | |
Args: | |
d (dict): old dict | |
keymap (dict): {'old_key':'new_key'} | |
Returns: | |
dict: new dict. | |
""" | |
updated_dict = {} | |
for k, v in zip(d.keys(), d.values()): | |
new_k = keymap.get(k, k) | |
updated_dict[new_k] = d[k] | |
return updated_dict | |
def __call__(self, results): | |
# dict to albumentations format | |
results = self.mapper(results, self.keymap_to_albu) | |
# TODO: add bbox_fields | |
if 'bboxes' in results: | |
# to list of boxes | |
if isinstance(results['bboxes'], np.ndarray): | |
results['bboxes'] = [x for x in results['bboxes']] | |
# add pseudo-field for filtration | |
if self.filter_lost_elements: | |
results['idx_mapper'] = np.arange(len(results['bboxes'])) | |
# TODO: Support mask structure in albu | |
if 'masks' in results: | |
if isinstance(results['masks'], PolygonMasks): | |
raise NotImplementedError( | |
'Albu only supports BitMap masks now') | |
ori_masks = results['masks'] | |
if albumentations.__version__ < '0.5': | |
results['masks'] = results['masks'].masks | |
else: | |
results['masks'] = [mask for mask in results['masks'].masks] | |
results = self.aug(**results) | |
if 'bboxes' in results: | |
if isinstance(results['bboxes'], list): | |
results['bboxes'] = np.array( | |
results['bboxes'], dtype=np.float32) | |
results['bboxes'] = results['bboxes'].reshape(-1, 4) | |
# filter label_fields | |
if self.filter_lost_elements: | |
for label in self.origin_label_fields: | |
results[label] = np.array( | |
[results[label][i] for i in results['idx_mapper']]) | |
if 'masks' in results: | |
results['masks'] = np.array( | |
[results['masks'][i] for i in results['idx_mapper']]) | |
results['masks'] = ori_masks.__class__( | |
results['masks'], results['image'].shape[0], | |
results['image'].shape[1]) | |
if (not len(results['idx_mapper']) | |
and self.skip_img_without_anno): | |
return None | |
if 'gt_labels' in results: | |
if isinstance(results['gt_labels'], list): | |
results['gt_labels'] = np.array(results['gt_labels']) | |
results['gt_labels'] = results['gt_labels'].astype(np.int64) | |
# back to the original format | |
results = self.mapper(results, self.keymap_back) | |
# update final shape | |
if self.update_pad_shape: | |
results['pad_shape'] = results['img'].shape | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' | |
return repr_str | |
class RandomCenterCropPad: | |
"""Random center crop and random around padding for CornerNet. | |
This operation generates randomly cropped image from the original image and | |
pads it simultaneously. Different from :class:`RandomCrop`, the output | |
shape may not equal to ``crop_size`` strictly. We choose a random value | |
from ``ratios`` and the output shape could be larger or smaller than | |
``crop_size``. The padding operation is also different from :class:`Pad`, | |
here we use around padding instead of right-bottom padding. | |
The relation between output image (padding image) and original image: | |
.. code:: text | |
output image | |
+----------------------------+ | |
| padded area | | |
+------|----------------------------|----------+ | |
| | cropped area | | | |
| | +---------------+ | | | |
| | | . center | | | original image | |
| | | range | | | | |
| | +---------------+ | | | |
+------|----------------------------|----------+ | |
| padded area | | |
+----------------------------+ | |
There are 5 main areas in the figure: | |
- output image: output image of this operation, also called padding | |
image in following instruction. | |
- original image: input image of this operation. | |
- padded area: non-intersect area of output image and original image. | |
- cropped area: the overlap of output image and original image. | |
- center range: a smaller area where random center chosen from. | |
center range is computed by ``border`` and original image's shape | |
to avoid our random center is too close to original image's border. | |
Also this operation act differently in train and test mode, the summary | |
pipeline is listed below. | |
Train pipeline: | |
1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image | |
will be ``random_ratio * crop_size``. | |
2. Choose a ``random_center`` in center range. | |
3. Generate padding image with center matches the ``random_center``. | |
4. Initialize the padding image with pixel value equals to ``mean``. | |
5. Copy the cropped area to padding image. | |
6. Refine annotations. | |
Test pipeline: | |
1. Compute output shape according to ``test_pad_mode``. | |
2. Generate padding image with center matches the original image | |
center. | |
3. Initialize the padding image with pixel value equals to ``mean``. | |
4. Copy the ``cropped area`` to padding image. | |
Args: | |
crop_size (tuple | None): expected size after crop, final size will | |
computed according to ratio. Requires (h, w) in train mode, and | |
None in test mode. | |
ratios (tuple): random select a ratio from tuple and crop image to | |
(crop_size[0] * ratio) * (crop_size[1] * ratio). | |
Only available in train mode. | |
border (int): max distance from center select area to image border. | |
Only available in train mode. | |
mean (sequence): Mean values of 3 channels. | |
std (sequence): Std values of 3 channels. | |
to_rgb (bool): Whether to convert the image from BGR to RGB. | |
test_mode (bool): whether involve random variables in transform. | |
In train mode, crop_size is fixed, center coords and ratio is | |
random selected from predefined lists. In test mode, crop_size | |
is image's original shape, center coords and ratio is fixed. | |
test_pad_mode (tuple): padding method and padding shape value, only | |
available in test mode. Default is using 'logical_or' with | |
127 as padding shape value. | |
- 'logical_or': final_shape = input_shape | padding_shape_value | |
- 'size_divisor': final_shape = int( | |
ceil(input_shape / padding_shape_value) * padding_shape_value) | |
test_pad_add_pix (int): Extra padding pixel in test mode. Default 0. | |
bbox_clip_border (bool, optional): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
""" | |
def __init__(self, | |
crop_size=None, | |
ratios=(0.9, 1.0, 1.1), | |
border=128, | |
mean=None, | |
std=None, | |
to_rgb=None, | |
test_mode=False, | |
test_pad_mode=('logical_or', 127), | |
test_pad_add_pix=0, | |
bbox_clip_border=True): | |
if test_mode: | |
assert crop_size is None, 'crop_size must be None in test mode' | |
assert ratios is None, 'ratios must be None in test mode' | |
assert border is None, 'border must be None in test mode' | |
assert isinstance(test_pad_mode, (list, tuple)) | |
assert test_pad_mode[0] in ['logical_or', 'size_divisor'] | |
else: | |
assert isinstance(crop_size, (list, tuple)) | |
assert crop_size[0] > 0 and crop_size[1] > 0, ( | |
'crop_size must > 0 in train mode') | |
assert isinstance(ratios, (list, tuple)) | |
assert test_pad_mode is None, ( | |
'test_pad_mode must be None in train mode') | |
self.crop_size = crop_size | |
self.ratios = ratios | |
self.border = border | |
# We do not set default value to mean, std and to_rgb because these | |
# hyper-parameters are easy to forget but could affect the performance. | |
# Please use the same setting as Normalize for performance assurance. | |
assert mean is not None and std is not None and to_rgb is not None | |
self.to_rgb = to_rgb | |
self.input_mean = mean | |
self.input_std = std | |
if to_rgb: | |
self.mean = mean[::-1] | |
self.std = std[::-1] | |
else: | |
self.mean = mean | |
self.std = std | |
self.test_mode = test_mode | |
self.test_pad_mode = test_pad_mode | |
self.test_pad_add_pix = test_pad_add_pix | |
self.bbox_clip_border = bbox_clip_border | |
def _get_border(self, border, size): | |
"""Get final border for the target size. | |
This function generates a ``final_border`` according to image's shape. | |
The area between ``final_border`` and ``size - final_border`` is the | |
``center range``. We randomly choose center from the ``center range`` | |
to avoid our random center is too close to original image's border. | |
Also ``center range`` should be larger than 0. | |
Args: | |
border (int): The initial border, default is 128. | |
size (int): The width or height of original image. | |
Returns: | |
int: The final border. | |
""" | |
k = 2 * border / size | |
i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k))) | |
return border // i | |
def _filter_boxes(self, patch, boxes): | |
"""Check whether the center of each box is in the patch. | |
Args: | |
patch (list[int]): The cropped area, [left, top, right, bottom]. | |
boxes (numpy array, (N x 4)): Ground truth boxes. | |
Returns: | |
mask (numpy array, (N,)): Each box is inside or outside the patch. | |
""" | |
center = (boxes[:, :2] + boxes[:, 2:]) / 2 | |
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * ( | |
center[:, 0] < patch[2]) * ( | |
center[:, 1] < patch[3]) | |
return mask | |
def _crop_image_and_paste(self, image, center, size): | |
"""Crop image with a given center and size, then paste the cropped | |
image to a blank image with two centers align. | |
This function is equivalent to generating a blank image with ``size`` | |
as its shape. Then cover it on the original image with two centers ( | |
the center of blank image and the random center of original image) | |
aligned. The overlap area is paste from the original image and the | |
outside area is filled with ``mean pixel``. | |
Args: | |
image (np array, H x W x C): Original image. | |
center (list[int]): Target crop center coord. | |
size (list[int]): Target crop size. [target_h, target_w] | |
Returns: | |
cropped_img (np array, target_h x target_w x C): Cropped image. | |
border (np array, 4): The distance of four border of | |
``cropped_img`` to the original image area, [top, bottom, | |
left, right] | |
patch (list[int]): The cropped area, [left, top, right, bottom]. | |
""" | |
center_y, center_x = center | |
target_h, target_w = size | |
img_h, img_w, img_c = image.shape | |
x0 = max(0, center_x - target_w // 2) | |
x1 = min(center_x + target_w // 2, img_w) | |
y0 = max(0, center_y - target_h // 2) | |
y1 = min(center_y + target_h // 2, img_h) | |
patch = np.array((int(x0), int(y0), int(x1), int(y1))) | |
left, right = center_x - x0, x1 - center_x | |
top, bottom = center_y - y0, y1 - center_y | |
cropped_center_y, cropped_center_x = target_h // 2, target_w // 2 | |
cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype) | |
for i in range(img_c): | |
cropped_img[:, :, i] += self.mean[i] | |
y_slice = slice(cropped_center_y - top, cropped_center_y + bottom) | |
x_slice = slice(cropped_center_x - left, cropped_center_x + right) | |
cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :] | |
border = np.array([ | |
cropped_center_y - top, cropped_center_y + bottom, | |
cropped_center_x - left, cropped_center_x + right | |
], | |
dtype=np.float32) | |
return cropped_img, border, patch | |
def _train_aug(self, results): | |
"""Random crop and around padding the original image. | |
Args: | |
results (dict): Image infomations in the augment pipeline. | |
Returns: | |
results (dict): The updated dict. | |
""" | |
img = results['img'] | |
h, w, c = img.shape | |
boxes = results['gt_bboxes'] | |
while True: | |
scale = random.choice(self.ratios) | |
new_h = int(self.crop_size[0] * scale) | |
new_w = int(self.crop_size[1] * scale) | |
h_border = self._get_border(self.border, h) | |
w_border = self._get_border(self.border, w) | |
for i in range(50): | |
center_x = random.randint(low=w_border, high=w - w_border) | |
center_y = random.randint(low=h_border, high=h - h_border) | |
cropped_img, border, patch = self._crop_image_and_paste( | |
img, [center_y, center_x], [new_h, new_w]) | |
mask = self._filter_boxes(patch, boxes) | |
# if image do not have valid bbox, any crop patch is valid. | |
if not mask.any() and len(boxes) > 0: | |
continue | |
results['img'] = cropped_img | |
results['img_shape'] = cropped_img.shape | |
results['pad_shape'] = cropped_img.shape | |
x0, y0, x1, y1 = patch | |
left_w, top_h = center_x - x0, center_y - y0 | |
cropped_center_x, cropped_center_y = new_w // 2, new_h // 2 | |
# crop bboxes accordingly and clip to the image boundary | |
for key in results.get('bbox_fields', []): | |
mask = self._filter_boxes(patch, results[key]) | |
bboxes = results[key][mask] | |
bboxes[:, 0:4:2] += cropped_center_x - left_w - x0 | |
bboxes[:, 1:4:2] += cropped_center_y - top_h - y0 | |
if self.bbox_clip_border: | |
bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w) | |
bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h) | |
keep = (bboxes[:, 2] > bboxes[:, 0]) & ( | |
bboxes[:, 3] > bboxes[:, 1]) | |
bboxes = bboxes[keep] | |
results[key] = bboxes | |
if key in ['gt_bboxes']: | |
if 'gt_labels' in results: | |
labels = results['gt_labels'][mask] | |
labels = labels[keep] | |
results['gt_labels'] = labels | |
if 'gt_masks' in results: | |
raise NotImplementedError( | |
'RandomCenterCropPad only supports bbox.') | |
# crop semantic seg | |
for key in results.get('seg_fields', []): | |
raise NotImplementedError( | |
'RandomCenterCropPad only supports bbox.') | |
return results | |
def _test_aug(self, results): | |
"""Around padding the original image without cropping. | |
The padding mode and value are from ``test_pad_mode``. | |
Args: | |
results (dict): Image infomations in the augment pipeline. | |
Returns: | |
results (dict): The updated dict. | |
""" | |
img = results['img'] | |
h, w, c = img.shape | |
results['img_shape'] = img.shape | |
if self.test_pad_mode[0] in ['logical_or']: | |
# self.test_pad_add_pix is only used for centernet | |
target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix | |
target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix | |
elif self.test_pad_mode[0] in ['size_divisor']: | |
divisor = self.test_pad_mode[1] | |
target_h = int(np.ceil(h / divisor)) * divisor | |
target_w = int(np.ceil(w / divisor)) * divisor | |
else: | |
raise NotImplementedError( | |
'RandomCenterCropPad only support two testing pad mode:' | |
'logical-or and size_divisor.') | |
cropped_img, border, _ = self._crop_image_and_paste( | |
img, [h // 2, w // 2], [target_h, target_w]) | |
results['img'] = cropped_img | |
results['pad_shape'] = cropped_img.shape | |
results['border'] = border | |
return results | |
def __call__(self, results): | |
img = results['img'] | |
assert img.dtype == np.float32, ( | |
'RandomCenterCropPad needs the input image of dtype np.float32,' | |
' please set "to_float32=True" in "LoadImageFromFile" pipeline') | |
h, w, c = img.shape | |
assert c == len(self.mean) | |
if self.test_mode: | |
return self._test_aug(results) | |
else: | |
return self._train_aug(results) | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(crop_size={self.crop_size}, ' | |
repr_str += f'ratios={self.ratios}, ' | |
repr_str += f'border={self.border}, ' | |
repr_str += f'mean={self.input_mean}, ' | |
repr_str += f'std={self.input_std}, ' | |
repr_str += f'to_rgb={self.to_rgb}, ' | |
repr_str += f'test_mode={self.test_mode}, ' | |
repr_str += f'test_pad_mode={self.test_pad_mode}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class CutOut: | |
"""CutOut operation. | |
Randomly drop some regions of image used in | |
`Cutout <https://arxiv.org/abs/1708.04552>`_. | |
Args: | |
n_holes (int | tuple[int, int]): Number of regions to be dropped. | |
If it is given as a list, number of holes will be randomly | |
selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. | |
cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate | |
shape of dropped regions. It can be `tuple[int, int]` to use a | |
fixed cutout shape, or `list[tuple[int, int]]` to randomly choose | |
shape from the list. | |
cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The | |
candidate ratio of dropped regions. It can be `tuple[float, float]` | |
to use a fixed ratio or `list[tuple[float, float]]` to randomly | |
choose ratio from the list. Please note that `cutout_shape` | |
and `cutout_ratio` cannot be both given at the same time. | |
fill_in (tuple[float, float, float] | tuple[int, int, int]): The value | |
of pixel to fill in the dropped regions. Default: (0, 0, 0). | |
""" | |
def __init__(self, | |
n_holes, | |
cutout_shape=None, | |
cutout_ratio=None, | |
fill_in=(0, 0, 0)): | |
assert (cutout_shape is None) ^ (cutout_ratio is None), \ | |
'Either cutout_shape or cutout_ratio should be specified.' | |
assert (isinstance(cutout_shape, (list, tuple)) | |
or isinstance(cutout_ratio, (list, tuple))) | |
if isinstance(n_holes, tuple): | |
assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] | |
else: | |
n_holes = (n_holes, n_holes) | |
self.n_holes = n_holes | |
self.fill_in = fill_in | |
self.with_ratio = cutout_ratio is not None | |
self.candidates = cutout_ratio if self.with_ratio else cutout_shape | |
if not isinstance(self.candidates, list): | |
self.candidates = [self.candidates] | |
def __call__(self, results): | |
"""Call function to drop some regions of image.""" | |
h, w, c = results['img'].shape | |
n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) | |
for _ in range(n_holes): | |
x1 = np.random.randint(0, w) | |
y1 = np.random.randint(0, h) | |
index = np.random.randint(0, len(self.candidates)) | |
if not self.with_ratio: | |
cutout_w, cutout_h = self.candidates[index] | |
else: | |
cutout_w = int(self.candidates[index][0] * w) | |
cutout_h = int(self.candidates[index][1] * h) | |
x2 = np.clip(x1 + cutout_w, 0, w) | |
y2 = np.clip(y1 + cutout_h, 0, h) | |
results['img'][y1:y2, x1:x2, :] = self.fill_in | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(n_holes={self.n_holes}, ' | |
repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio | |
else f'cutout_shape={self.candidates}, ') | |
repr_str += f'fill_in={self.fill_in})' | |
return repr_str | |
class Mosaic: | |
"""Mosaic augmentation. | |
Given 4 images, mosaic transform combines them into | |
one output image. The output image is composed of the parts from each sub- | |
image. | |
.. code:: text | |
mosaic transform | |
center_x | |
+------------------------------+ | |
| pad | pad | | |
| +-----------+ | | |
| | | | | |
| | image1 |--------+ | | |
| | | | | | |
| | | image2 | | | |
center_y |----+-------------+-----------| | |
| | cropped | | | |
|pad | image3 | image4 | | |
| | | | | |
+----|-------------+-----------+ | |
| | | |
+-------------+ | |
The mosaic transform steps are as follows: | |
1. Choose the mosaic center as the intersections of 4 images | |
2. Get the left top image according to the index, and randomly | |
sample another 3 images from the custom dataset. | |
3. Sub image will be cropped if image is larger than mosaic patch | |
Args: | |
img_scale (Sequence[int]): Image size after mosaic pipeline of single | |
image. The shape order should be (height, width). | |
Default to (640, 640). | |
center_ratio_range (Sequence[float]): Center ratio range of mosaic | |
output. Default to (0.5, 1.5). | |
min_bbox_size (int | float): The minimum pixel for filtering | |
invalid bboxes after the mosaic pipeline. Default to 0. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
skip_filter (bool): Whether to skip filtering rules. If it | |
is True, the filter rule will not be applied, and the | |
`min_bbox_size` is invalid. Default to True. | |
pad_val (int): Pad value. Default to 114. | |
prob (float): Probability of applying this transformation. | |
Default to 1.0. | |
""" | |
def __init__(self, | |
img_scale=(640, 640), | |
center_ratio_range=(0.5, 1.5), | |
min_bbox_size=0, | |
bbox_clip_border=True, | |
skip_filter=True, | |
pad_val=114, | |
prob=1.0): | |
assert isinstance(img_scale, tuple) | |
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\ | |
f'got {prob}.' | |
log_img_scale(img_scale, skip_square=True) | |
self.img_scale = img_scale | |
self.center_ratio_range = center_ratio_range | |
self.min_bbox_size = min_bbox_size | |
self.bbox_clip_border = bbox_clip_border | |
self.skip_filter = skip_filter | |
self.pad_val = pad_val | |
self.prob = prob | |
def __call__(self, results): | |
"""Call function to make a mosaic of image. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Result dict with mosaic transformed. | |
""" | |
if random.uniform(0, 1) > self.prob: | |
return results | |
results = self._mosaic_transform(results) | |
return results | |
def get_indexes(self, dataset): | |
"""Call function to collect indexes. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: indexes. | |
""" | |
indexes = [random.randint(0, len(dataset)) for _ in range(3)] | |
return indexes | |
def _mosaic_transform(self, results): | |
"""Mosaic transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
assert 'mix_results' in results | |
mosaic_labels = [] | |
mosaic_bboxes = [] | |
if len(results['img'].shape) == 3: | |
mosaic_img = np.full( | |
(int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
else: | |
mosaic_img = np.full( | |
(int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
# mosaic center x, y | |
center_x = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[1]) | |
center_y = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[0]) | |
center_position = (center_x, center_y) | |
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') | |
for i, loc in enumerate(loc_strs): | |
if loc == 'top_left': | |
results_patch = copy.deepcopy(results) | |
else: | |
results_patch = copy.deepcopy(results['mix_results'][i - 1]) | |
img_i = results_patch['img'] | |
h_i, w_i = img_i.shape[:2] | |
# keep_ratio resize | |
scale_ratio_i = min(self.img_scale[0] / h_i, | |
self.img_scale[1] / w_i) | |
img_i = mmcv.imresize( | |
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) | |
# compute the combine parameters | |
paste_coord, crop_coord = self._mosaic_combine( | |
loc, center_position, img_i.shape[:2][::-1]) | |
x1_p, y1_p, x2_p, y2_p = paste_coord | |
x1_c, y1_c, x2_c, y2_c = crop_coord | |
# crop and paste image | |
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] | |
# adjust coordinate | |
gt_bboxes_i = results_patch['gt_bboxes'] | |
gt_labels_i = results_patch['gt_labels'] | |
if gt_bboxes_i.shape[0] > 0: | |
padw = x1_p - x1_c | |
padh = y1_p - y1_c | |
gt_bboxes_i[:, 0::2] = \ | |
scale_ratio_i * gt_bboxes_i[:, 0::2] + padw | |
gt_bboxes_i[:, 1::2] = \ | |
scale_ratio_i * gt_bboxes_i[:, 1::2] + padh | |
mosaic_bboxes.append(gt_bboxes_i) | |
mosaic_labels.append(gt_labels_i) | |
if len(mosaic_labels) > 0: | |
mosaic_bboxes = np.concatenate(mosaic_bboxes, 0) | |
mosaic_labels = np.concatenate(mosaic_labels, 0) | |
if self.bbox_clip_border: | |
mosaic_bboxes[:, 0::2] = np.clip(mosaic_bboxes[:, 0::2], 0, | |
2 * self.img_scale[1]) | |
mosaic_bboxes[:, 1::2] = np.clip(mosaic_bboxes[:, 1::2], 0, | |
2 * self.img_scale[0]) | |
if not self.skip_filter: | |
mosaic_bboxes, mosaic_labels = \ | |
self._filter_box_candidates(mosaic_bboxes, mosaic_labels) | |
# remove outside bboxes | |
inside_inds = find_inside_bboxes(mosaic_bboxes, 2 * self.img_scale[0], | |
2 * self.img_scale[1]) | |
mosaic_bboxes = mosaic_bboxes[inside_inds] | |
mosaic_labels = mosaic_labels[inside_inds] | |
results['img'] = mosaic_img | |
results['img_shape'] = mosaic_img.shape | |
results['gt_bboxes'] = mosaic_bboxes | |
results['gt_labels'] = mosaic_labels | |
return results | |
def _mosaic_combine(self, loc, center_position_xy, img_shape_wh): | |
"""Calculate global coordinate of mosaic image and local coordinate of | |
cropped sub-image. | |
Args: | |
loc (str): Index for the sub-image, loc in ('top_left', | |
'top_right', 'bottom_left', 'bottom_right'). | |
center_position_xy (Sequence[float]): Mixing center for 4 images, | |
(x, y). | |
img_shape_wh (Sequence[int]): Width and height of sub-image | |
Returns: | |
tuple[tuple[float]]: Corresponding coordinate of pasting and | |
cropping | |
- paste_coord (tuple): paste corner coordinate in mosaic image. | |
- crop_coord (tuple): crop corner coordinate in mosaic image. | |
""" | |
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right') | |
if loc == 'top_left': | |
# index0 to top left part of image | |
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ | |
max(center_position_xy[1] - img_shape_wh[1], 0), \ | |
center_position_xy[0], \ | |
center_position_xy[1] | |
crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - ( | |
y2 - y1), img_shape_wh[0], img_shape_wh[1] | |
elif loc == 'top_right': | |
# index1 to top right part of image | |
x1, y1, x2, y2 = center_position_xy[0], \ | |
max(center_position_xy[1] - img_shape_wh[1], 0), \ | |
min(center_position_xy[0] + img_shape_wh[0], | |
self.img_scale[1] * 2), \ | |
center_position_xy[1] | |
crop_coord = 0, img_shape_wh[1] - (y2 - y1), min( | |
img_shape_wh[0], x2 - x1), img_shape_wh[1] | |
elif loc == 'bottom_left': | |
# index2 to bottom left part of image | |
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ | |
center_position_xy[1], \ | |
center_position_xy[0], \ | |
min(self.img_scale[0] * 2, center_position_xy[1] + | |
img_shape_wh[1]) | |
crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min( | |
y2 - y1, img_shape_wh[1]) | |
else: | |
# index3 to bottom right part of image | |
x1, y1, x2, y2 = center_position_xy[0], \ | |
center_position_xy[1], \ | |
min(center_position_xy[0] + img_shape_wh[0], | |
self.img_scale[1] * 2), \ | |
min(self.img_scale[0] * 2, center_position_xy[1] + | |
img_shape_wh[1]) | |
crop_coord = 0, 0, min(img_shape_wh[0], | |
x2 - x1), min(y2 - y1, img_shape_wh[1]) | |
paste_coord = x1, y1, x2, y2 | |
return paste_coord, crop_coord | |
def _filter_box_candidates(self, bboxes, labels): | |
"""Filter out bboxes too small after Mosaic.""" | |
bbox_w = bboxes[:, 2] - bboxes[:, 0] | |
bbox_h = bboxes[:, 3] - bboxes[:, 1] | |
valid_inds = (bbox_w > self.min_bbox_size) & \ | |
(bbox_h > self.min_bbox_size) | |
valid_inds = np.nonzero(valid_inds)[0] | |
return bboxes[valid_inds], labels[valid_inds] | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'img_scale={self.img_scale}, ' | |
repr_str += f'center_ratio_range={self.center_ratio_range}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'min_bbox_size={self.min_bbox_size}, ' | |
repr_str += f'skip_filter={self.skip_filter})' | |
return repr_str | |
class MixUp: | |
"""MixUp data augmentation. | |
.. code:: text | |
mixup transform | |
+------------------------------+ | |
| mixup image | | | |
| +--------|--------+ | | |
| | | | | | |
|---------------+ | | | |
| | | | | |
| | image | | | |
| | | | | |
| | | | | |
| |-----------------+ | | |
| pad | | |
+------------------------------+ | |
The mixup transform steps are as follows: | |
1. Another random image is picked by dataset and embedded in | |
the top left patch(after padding and resizing) | |
2. The target of mixup transform is the weighted average of mixup | |
image and origin image. | |
Args: | |
img_scale (Sequence[int]): Image output size after mixup pipeline. | |
The shape order should be (height, width). Default: (640, 640). | |
ratio_range (Sequence[float]): Scale ratio of mixup image. | |
Default: (0.5, 1.5). | |
flip_ratio (float): Horizontal flip ratio of mixup image. | |
Default: 0.5. | |
pad_val (int): Pad value. Default: 114. | |
max_iters (int): The maximum number of iterations. If the number of | |
iterations is greater than `max_iters`, but gt_bbox is still | |
empty, then the iteration is terminated. Default: 15. | |
min_bbox_size (float): Width and height threshold to filter bboxes. | |
If the height or width of a box is smaller than this value, it | |
will be removed. Default: 5. | |
min_area_ratio (float): Threshold of area ratio between | |
original bboxes and wrapped bboxes. If smaller than this value, | |
the box will be removed. Default: 0.2. | |
max_aspect_ratio (float): Aspect ratio of width and height | |
threshold to filter bboxes. If max(h/w, w/h) larger than this | |
value, the box will be removed. Default: 20. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
skip_filter (bool): Whether to skip filtering rules. If it | |
is True, the filter rule will not be applied, and the | |
`min_bbox_size` and `min_area_ratio` and `max_aspect_ratio` | |
is invalid. Default to True. | |
""" | |
def __init__(self, | |
img_scale=(640, 640), | |
ratio_range=(0.5, 1.5), | |
flip_ratio=0.5, | |
pad_val=114, | |
max_iters=15, | |
min_bbox_size=5, | |
min_area_ratio=0.2, | |
max_aspect_ratio=20, | |
bbox_clip_border=True, | |
skip_filter=True): | |
assert isinstance(img_scale, tuple) | |
log_img_scale(img_scale, skip_square=True) | |
self.dynamic_scale = img_scale | |
self.ratio_range = ratio_range | |
self.flip_ratio = flip_ratio | |
self.pad_val = pad_val | |
self.max_iters = max_iters | |
self.min_bbox_size = min_bbox_size | |
self.min_area_ratio = min_area_ratio | |
self.max_aspect_ratio = max_aspect_ratio | |
self.bbox_clip_border = bbox_clip_border | |
self.skip_filter = skip_filter | |
def __call__(self, results): | |
"""Call function to make a mixup of image. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Result dict with mixup transformed. | |
""" | |
results = self._mixup_transform(results) | |
return results | |
def get_indexes(self, dataset): | |
"""Call function to collect indexes. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: indexes. | |
""" | |
for i in range(self.max_iters): | |
index = random.randint(0, len(dataset)) | |
gt_bboxes_i = dataset.get_ann_info(index)['bboxes'] | |
if len(gt_bboxes_i) != 0: | |
break | |
return index | |
def _mixup_transform(self, results): | |
"""MixUp transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
assert 'mix_results' in results | |
assert len( | |
results['mix_results']) == 1, 'MixUp only support 2 images now !' | |
if results['mix_results'][0]['gt_bboxes'].shape[0] == 0: | |
# empty bbox | |
return results | |
retrieve_results = results['mix_results'][0] | |
retrieve_img = retrieve_results['img'] | |
jit_factor = random.uniform(*self.ratio_range) | |
is_filp = random.uniform(0, 1) < self.flip_ratio | |
if len(retrieve_img.shape) == 3: | |
out_img = np.ones( | |
(self.dynamic_scale[0], self.dynamic_scale[1], 3), | |
dtype=retrieve_img.dtype) * self.pad_val | |
else: | |
out_img = np.ones( | |
self.dynamic_scale, dtype=retrieve_img.dtype) * self.pad_val | |
# 1. keep_ratio resize | |
scale_ratio = min(self.dynamic_scale[0] / retrieve_img.shape[0], | |
self.dynamic_scale[1] / retrieve_img.shape[1]) | |
retrieve_img = mmcv.imresize( | |
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio), | |
int(retrieve_img.shape[0] * scale_ratio))) | |
# 2. paste | |
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img | |
# 3. scale jit | |
scale_ratio *= jit_factor | |
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor), | |
int(out_img.shape[0] * jit_factor))) | |
# 4. flip | |
if is_filp: | |
out_img = out_img[:, ::-1, :] | |
# 5. random crop | |
ori_img = results['img'] | |
origin_h, origin_w = out_img.shape[:2] | |
target_h, target_w = ori_img.shape[:2] | |
padded_img = np.zeros( | |
(max(origin_h, target_h), max(origin_w, | |
target_w), 3)).astype(np.uint8) | |
padded_img[:origin_h, :origin_w] = out_img | |
x_offset, y_offset = 0, 0 | |
if padded_img.shape[0] > target_h: | |
y_offset = random.randint(0, padded_img.shape[0] - target_h) | |
if padded_img.shape[1] > target_w: | |
x_offset = random.randint(0, padded_img.shape[1] - target_w) | |
padded_cropped_img = padded_img[y_offset:y_offset + target_h, | |
x_offset:x_offset + target_w] | |
# 6. adjust bbox | |
retrieve_gt_bboxes = retrieve_results['gt_bboxes'] | |
retrieve_gt_bboxes[:, 0::2] = retrieve_gt_bboxes[:, 0::2] * scale_ratio | |
retrieve_gt_bboxes[:, 1::2] = retrieve_gt_bboxes[:, 1::2] * scale_ratio | |
if self.bbox_clip_border: | |
retrieve_gt_bboxes[:, 0::2] = np.clip(retrieve_gt_bboxes[:, 0::2], | |
0, origin_w) | |
retrieve_gt_bboxes[:, 1::2] = np.clip(retrieve_gt_bboxes[:, 1::2], | |
0, origin_h) | |
if is_filp: | |
retrieve_gt_bboxes[:, 0::2] = ( | |
origin_w - retrieve_gt_bboxes[:, 0::2][:, ::-1]) | |
# 7. filter | |
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.copy() | |
cp_retrieve_gt_bboxes[:, 0::2] = \ | |
cp_retrieve_gt_bboxes[:, 0::2] - x_offset | |
cp_retrieve_gt_bboxes[:, 1::2] = \ | |
cp_retrieve_gt_bboxes[:, 1::2] - y_offset | |
if self.bbox_clip_border: | |
cp_retrieve_gt_bboxes[:, 0::2] = np.clip( | |
cp_retrieve_gt_bboxes[:, 0::2], 0, target_w) | |
cp_retrieve_gt_bboxes[:, 1::2] = np.clip( | |
cp_retrieve_gt_bboxes[:, 1::2], 0, target_h) | |
# 8. mix up | |
ori_img = ori_img.astype(np.float32) | |
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32) | |
retrieve_gt_labels = retrieve_results['gt_labels'] | |
if not self.skip_filter: | |
keep_list = self._filter_box_candidates(retrieve_gt_bboxes.T, | |
cp_retrieve_gt_bboxes.T) | |
retrieve_gt_labels = retrieve_gt_labels[keep_list] | |
cp_retrieve_gt_bboxes = cp_retrieve_gt_bboxes[keep_list] | |
mixup_gt_bboxes = np.concatenate( | |
(results['gt_bboxes'], cp_retrieve_gt_bboxes), axis=0) | |
mixup_gt_labels = np.concatenate( | |
(results['gt_labels'], retrieve_gt_labels), axis=0) | |
# remove outside bbox | |
inside_inds = find_inside_bboxes(mixup_gt_bboxes, target_h, target_w) | |
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds] | |
mixup_gt_labels = mixup_gt_labels[inside_inds] | |
results['img'] = mixup_img.astype(np.uint8) | |
results['img_shape'] = mixup_img.shape | |
results['gt_bboxes'] = mixup_gt_bboxes | |
results['gt_labels'] = mixup_gt_labels | |
return results | |
def _filter_box_candidates(self, bbox1, bbox2): | |
"""Compute candidate boxes which include following 5 things: | |
bbox1 before augment, bbox2 after augment, min_bbox_size (pixels), | |
min_area_ratio, max_aspect_ratio. | |
""" | |
w1, h1 = bbox1[2] - bbox1[0], bbox1[3] - bbox1[1] | |
w2, h2 = bbox2[2] - bbox2[0], bbox2[3] - bbox2[1] | |
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) | |
return ((w2 > self.min_bbox_size) | |
& (h2 > self.min_bbox_size) | |
& (w2 * h2 / (w1 * h1 + 1e-16) > self.min_area_ratio) | |
& (ar < self.max_aspect_ratio)) | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'dynamic_scale={self.dynamic_scale}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'flip_ratio={self.flip_ratio}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'max_iters={self.max_iters}, ' | |
repr_str += f'min_bbox_size={self.min_bbox_size}, ' | |
repr_str += f'min_area_ratio={self.min_area_ratio}, ' | |
repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, ' | |
repr_str += f'skip_filter={self.skip_filter})' | |
return repr_str | |
class RandomAffine: | |
"""Random affine transform data augmentation. | |
This operation randomly generates affine transform matrix which including | |
rotation, translation, shear and scaling transforms. | |
Args: | |
max_rotate_degree (float): Maximum degrees of rotation transform. | |
Default: 10. | |
max_translate_ratio (float): Maximum ratio of translation. | |
Default: 0.1. | |
scaling_ratio_range (tuple[float]): Min and max ratio of | |
scaling transform. Default: (0.5, 1.5). | |
max_shear_degree (float): Maximum degrees of shear | |
transform. Default: 2. | |
border (tuple[int]): Distance from height and width sides of input | |
image to adjust output shape. Only used in mosaic dataset. | |
Default: (0, 0). | |
border_val (tuple[int]): Border padding values of 3 channels. | |
Default: (114, 114, 114). | |
min_bbox_size (float): Width and height threshold to filter bboxes. | |
If the height or width of a box is smaller than this value, it | |
will be removed. Default: 2. | |
min_area_ratio (float): Threshold of area ratio between | |
original bboxes and wrapped bboxes. If smaller than this value, | |
the box will be removed. Default: 0.2. | |
max_aspect_ratio (float): Aspect ratio of width and height | |
threshold to filter bboxes. If max(h/w, w/h) larger than this | |
value, the box will be removed. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
skip_filter (bool): Whether to skip filtering rules. If it | |
is True, the filter rule will not be applied, and the | |
`min_bbox_size` and `min_area_ratio` and `max_aspect_ratio` | |
is invalid. Default to True. | |
""" | |
def __init__(self, | |
max_rotate_degree=10.0, | |
max_translate_ratio=0.1, | |
scaling_ratio_range=(0.5, 1.5), | |
max_shear_degree=2.0, | |
border=(0, 0), | |
border_val=(114, 114, 114), | |
min_bbox_size=2, | |
min_area_ratio=0.2, | |
max_aspect_ratio=20, | |
bbox_clip_border=True, | |
skip_filter=True): | |
assert 0 <= max_translate_ratio <= 1 | |
assert scaling_ratio_range[0] <= scaling_ratio_range[1] | |
assert scaling_ratio_range[0] > 0 | |
self.max_rotate_degree = max_rotate_degree | |
self.max_translate_ratio = max_translate_ratio | |
self.scaling_ratio_range = scaling_ratio_range | |
self.max_shear_degree = max_shear_degree | |
self.border = border | |
self.border_val = border_val | |
self.min_bbox_size = min_bbox_size | |
self.min_area_ratio = min_area_ratio | |
self.max_aspect_ratio = max_aspect_ratio | |
self.bbox_clip_border = bbox_clip_border | |
self.skip_filter = skip_filter | |
def __call__(self, results): | |
img = results['img'] | |
height = img.shape[0] + self.border[0] * 2 | |
width = img.shape[1] + self.border[1] * 2 | |
# Rotation | |
rotation_degree = random.uniform(-self.max_rotate_degree, | |
self.max_rotate_degree) | |
rotation_matrix = self._get_rotation_matrix(rotation_degree) | |
# Scaling | |
scaling_ratio = random.uniform(self.scaling_ratio_range[0], | |
self.scaling_ratio_range[1]) | |
scaling_matrix = self._get_scaling_matrix(scaling_ratio) | |
# Shear | |
x_degree = random.uniform(-self.max_shear_degree, | |
self.max_shear_degree) | |
y_degree = random.uniform(-self.max_shear_degree, | |
self.max_shear_degree) | |
shear_matrix = self._get_shear_matrix(x_degree, y_degree) | |
# Translation | |
trans_x = random.uniform(-self.max_translate_ratio, | |
self.max_translate_ratio) * width | |
trans_y = random.uniform(-self.max_translate_ratio, | |
self.max_translate_ratio) * height | |
translate_matrix = self._get_translation_matrix(trans_x, trans_y) | |
warp_matrix = ( | |
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix) | |
img = cv2.warpPerspective( | |
img, | |
warp_matrix, | |
dsize=(width, height), | |
borderValue=self.border_val) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
for key in results.get('bbox_fields', []): | |
bboxes = results[key] | |
num_bboxes = len(bboxes) | |
if num_bboxes: | |
# homogeneous coordinates | |
xs = bboxes[:, [0, 0, 2, 2]].reshape(num_bboxes * 4) | |
ys = bboxes[:, [1, 3, 3, 1]].reshape(num_bboxes * 4) | |
ones = np.ones_like(xs) | |
points = np.vstack([xs, ys, ones]) | |
warp_points = warp_matrix @ points | |
warp_points = warp_points[:2] / warp_points[2] | |
xs = warp_points[0].reshape(num_bboxes, 4) | |
ys = warp_points[1].reshape(num_bboxes, 4) | |
warp_bboxes = np.vstack( | |
(xs.min(1), ys.min(1), xs.max(1), ys.max(1))).T | |
if self.bbox_clip_border: | |
warp_bboxes[:, [0, 2]] = \ | |
warp_bboxes[:, [0, 2]].clip(0, width) | |
warp_bboxes[:, [1, 3]] = \ | |
warp_bboxes[:, [1, 3]].clip(0, height) | |
# remove outside bbox | |
valid_index = find_inside_bboxes(warp_bboxes, height, width) | |
if not self.skip_filter: | |
# filter bboxes | |
filter_index = self.filter_gt_bboxes( | |
bboxes * scaling_ratio, warp_bboxes) | |
valid_index = valid_index & filter_index | |
results[key] = warp_bboxes[valid_index] | |
if key in ['gt_bboxes']: | |
if 'gt_labels' in results: | |
results['gt_labels'] = results['gt_labels'][ | |
valid_index] | |
if 'gt_masks' in results: | |
raise NotImplementedError( | |
'RandomAffine only supports bbox.') | |
return results | |
def filter_gt_bboxes(self, origin_bboxes, wrapped_bboxes): | |
origin_w = origin_bboxes[:, 2] - origin_bboxes[:, 0] | |
origin_h = origin_bboxes[:, 3] - origin_bboxes[:, 1] | |
wrapped_w = wrapped_bboxes[:, 2] - wrapped_bboxes[:, 0] | |
wrapped_h = wrapped_bboxes[:, 3] - wrapped_bboxes[:, 1] | |
aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16), | |
wrapped_h / (wrapped_w + 1e-16)) | |
wh_valid_idx = (wrapped_w > self.min_bbox_size) & \ | |
(wrapped_h > self.min_bbox_size) | |
area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h + | |
1e-16) > self.min_area_ratio | |
aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio | |
return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, ' | |
repr_str += f'max_translate_ratio={self.max_translate_ratio}, ' | |
repr_str += f'scaling_ratio={self.scaling_ratio_range}, ' | |
repr_str += f'max_shear_degree={self.max_shear_degree}, ' | |
repr_str += f'border={self.border}, ' | |
repr_str += f'border_val={self.border_val}, ' | |
repr_str += f'min_bbox_size={self.min_bbox_size}, ' | |
repr_str += f'min_area_ratio={self.min_area_ratio}, ' | |
repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, ' | |
repr_str += f'skip_filter={self.skip_filter})' | |
return repr_str | |
def _get_rotation_matrix(rotate_degrees): | |
radian = math.radians(rotate_degrees) | |
rotation_matrix = np.array( | |
[[np.cos(radian), -np.sin(radian), 0.], | |
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return rotation_matrix | |
def _get_scaling_matrix(scale_ratio): | |
scaling_matrix = np.array( | |
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return scaling_matrix | |
def _get_share_matrix(scale_ratio): | |
scaling_matrix = np.array( | |
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return scaling_matrix | |
def _get_shear_matrix(x_shear_degrees, y_shear_degrees): | |
x_radian = math.radians(x_shear_degrees) | |
y_radian = math.radians(y_shear_degrees) | |
shear_matrix = np.array([[1, np.tan(x_radian), 0.], | |
[np.tan(y_radian), 1, 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return shear_matrix | |
def _get_translation_matrix(x, y): | |
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]], | |
dtype=np.float32) | |
return translation_matrix | |
class YOLOXHSVRandomAug: | |
"""Apply HSV augmentation to image sequentially. It is referenced from | |
https://github.com/Megvii- | |
BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21. | |
Args: | |
hue_delta (int): delta of hue. Default: 5. | |
saturation_delta (int): delta of saturation. Default: 30. | |
value_delta (int): delat of value. Default: 30. | |
""" | |
def __init__(self, hue_delta=5, saturation_delta=30, value_delta=30): | |
self.hue_delta = hue_delta | |
self.saturation_delta = saturation_delta | |
self.value_delta = value_delta | |
def __call__(self, results): | |
img = results['img'] | |
hsv_gains = np.random.uniform(-1, 1, 3) * [ | |
self.hue_delta, self.saturation_delta, self.value_delta | |
] | |
# random selection of h, s, v | |
hsv_gains *= np.random.randint(0, 2, 3) | |
# prevent overflow | |
hsv_gains = hsv_gains.astype(np.int16) | |
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16) | |
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180 | |
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255) | |
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255) | |
cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img) | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(hue_delta={self.hue_delta}, ' | |
repr_str += f'saturation_delta={self.saturation_delta}, ' | |
repr_str += f'value_delta={self.value_delta})' | |
return repr_str | |
class CopyPaste: | |
"""Simple Copy-Paste is a Strong Data Augmentation Method for Instance | |
Segmentation The simple copy-paste transform steps are as follows: | |
1. The destination image is already resized with aspect ratio kept, | |
cropped and padded. | |
2. Randomly select a source image, which is also already resized | |
with aspect ratio kept, cropped and padded in a similar way | |
as the destination image. | |
3. Randomly select some objects from the source image. | |
4. Paste these source objects to the destination image directly, | |
due to the source and destination image have the same size. | |
5. Update object masks of the destination image, for some origin objects | |
may be occluded. | |
6. Generate bboxes from the updated destination masks and | |
filter some objects which are totally occluded, and adjust bboxes | |
which are partly occluded. | |
7. Append selected source bboxes, masks, and labels. | |
Args: | |
max_num_pasted (int): The maximum number of pasted objects. | |
Default: 100. | |
bbox_occluded_thr (int): The threshold of occluded bbox. | |
Default: 10. | |
mask_occluded_thr (int): The threshold of occluded mask. | |
Default: 300. | |
selected (bool): Whether select objects or not. If select is False, | |
all objects of the source image will be pasted to the | |
destination image. | |
Default: True. | |
""" | |
def __init__( | |
self, | |
max_num_pasted=100, | |
bbox_occluded_thr=10, | |
mask_occluded_thr=300, | |
selected=True, | |
): | |
self.max_num_pasted = max_num_pasted | |
self.bbox_occluded_thr = bbox_occluded_thr | |
self.mask_occluded_thr = mask_occluded_thr | |
self.selected = selected | |
self.paste_by_box = False | |
def get_indexes(self, dataset): | |
"""Call function to collect indexes.s. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: Indexes. | |
""" | |
return random.randint(0, len(dataset)) | |
def gen_masks_from_bboxes(self, bboxes, img_shape): | |
"""Generate gt_masks based on gt_bboxes. | |
Args: | |
bboxes (list): The bboxes's list. | |
img_shape (tuple): The shape of image. | |
Returns: | |
BitmapMasks | |
""" | |
self.paste_by_box = True | |
img_h, img_w = img_shape[:2] | |
xmin, ymin = bboxes[:, 0:1], bboxes[:, 1:2] | |
xmax, ymax = bboxes[:, 2:3], bboxes[:, 3:4] | |
gt_masks = np.zeros((len(bboxes), img_h, img_w), dtype=np.uint8) | |
for i in range(len(bboxes)): | |
gt_masks[i, | |
int(ymin[i]):int(ymax[i]), | |
int(xmin[i]):int(xmax[i])] = 1 | |
return BitmapMasks(gt_masks, img_h, img_w) | |
def get_gt_masks(self, results): | |
"""Get gt_masks originally or generated based on bboxes. | |
If gt_masks is not contained in results, | |
it will be generated based on gt_bboxes. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
BitmapMasks: gt_masks, originally or generated based on bboxes. | |
""" | |
if results.get('gt_masks', None) is not None: | |
return results['gt_masks'] | |
else: | |
return self.gen_masks_from_bboxes( | |
results.get('gt_bboxes', []), results['img'].shape) | |
def __call__(self, results): | |
"""Call function to make a copy-paste of image. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Result dict with copy-paste transformed. | |
""" | |
assert 'mix_results' in results | |
num_images = len(results['mix_results']) | |
assert num_images == 1, \ | |
f'CopyPaste only supports processing 2 images, got {num_images}' | |
# Get gt_masks originally or generated based on bboxes. | |
results['gt_masks'] = self.get_gt_masks(results) | |
# only one mix picture | |
results['mix_results'][0]['gt_masks'] = self.get_gt_masks( | |
results['mix_results'][0]) | |
if self.selected: | |
selected_results = self._select_object(results['mix_results'][0]) | |
else: | |
selected_results = results['mix_results'][0] | |
return self._copy_paste(results, selected_results) | |
def _select_object(self, results): | |
"""Select some objects from the source results.""" | |
bboxes = results['gt_bboxes'] | |
labels = results['gt_labels'] | |
masks = results['gt_masks'] | |
max_num_pasted = min(bboxes.shape[0] + 1, self.max_num_pasted) | |
num_pasted = np.random.randint(0, max_num_pasted) | |
selected_inds = np.random.choice( | |
bboxes.shape[0], size=num_pasted, replace=False) | |
selected_bboxes = bboxes[selected_inds] | |
selected_labels = labels[selected_inds] | |
selected_masks = masks[selected_inds] | |
results['gt_bboxes'] = selected_bboxes | |
results['gt_labels'] = selected_labels | |
results['gt_masks'] = selected_masks | |
return results | |
def _copy_paste(self, dst_results, src_results): | |
"""CopyPaste transform function. | |
Args: | |
dst_results (dict): Result dict of the destination image. | |
src_results (dict): Result dict of the source image. | |
Returns: | |
dict: Updated result dict. | |
""" | |
dst_img = dst_results['img'] | |
dst_bboxes = dst_results['gt_bboxes'] | |
dst_labels = dst_results['gt_labels'] | |
dst_masks = dst_results['gt_masks'] | |
src_img = src_results['img'] | |
src_bboxes = src_results['gt_bboxes'] | |
src_labels = src_results['gt_labels'] | |
src_masks = src_results['gt_masks'] | |
if len(src_bboxes) == 0: | |
if self.paste_by_box: | |
dst_results.pop('gt_masks') | |
return dst_results | |
# update masks and generate bboxes from updated masks | |
composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0) | |
updated_dst_masks = self.get_updated_masks(dst_masks, composed_mask) | |
updated_dst_bboxes = updated_dst_masks.get_bboxes() | |
assert len(updated_dst_bboxes) == len(updated_dst_masks) | |
# filter totally occluded objects | |
bboxes_inds = np.all( | |
np.abs( | |
(updated_dst_bboxes - dst_bboxes)) <= self.bbox_occluded_thr, | |
axis=-1) | |
masks_inds = updated_dst_masks.masks.sum( | |
axis=(1, 2)) > self.mask_occluded_thr | |
valid_inds = bboxes_inds | masks_inds | |
# Paste source objects to destination image directly | |
img = dst_img * (1 - composed_mask[..., np.newaxis] | |
) + src_img * composed_mask[..., np.newaxis] | |
bboxes = np.concatenate([updated_dst_bboxes[valid_inds], src_bboxes]) | |
labels = np.concatenate([dst_labels[valid_inds], src_labels]) | |
masks = np.concatenate( | |
[updated_dst_masks.masks[valid_inds], src_masks.masks]) | |
dst_results['img'] = img | |
dst_results['gt_bboxes'] = bboxes | |
dst_results['gt_labels'] = labels | |
if self.paste_by_box: | |
dst_results.pop('gt_masks') | |
else: | |
dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1], | |
masks.shape[2]) | |
return dst_results | |
def get_updated_masks(self, masks, composed_mask): | |
assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \ | |
'Cannot compare two arrays of different size' | |
masks.masks = np.where(composed_mask, 0, masks.masks) | |
return masks | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'max_num_pasted={self.max_num_pasted}, ' | |
repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, ' | |
repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, ' | |
repr_str += f'selected={self.selected}, ' | |
return repr_str | |