RockeyCoss
add code files”
51f6859
raw
history blame
8.09 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections import abc
from contextlib import contextmanager
from functools import wraps
import torch
from mmdet.utils import get_root_logger
def cast_tensor_type(inputs, src_type=None, dst_type=None):
"""Recursively convert Tensor in inputs from ``src_type`` to ``dst_type``.
Args:
inputs: Inputs that to be casted.
src_type (torch.dtype | torch.device): Source type.
src_type (torch.dtype | torch.device): Destination type.
Returns:
The same type with inputs, but all contained Tensors have been cast.
"""
assert dst_type is not None
if isinstance(inputs, torch.Tensor):
if isinstance(dst_type, torch.device):
# convert Tensor to dst_device
if hasattr(inputs, 'to') and \
hasattr(inputs, 'device') and \
(inputs.device == src_type or src_type is None):
return inputs.to(dst_type)
else:
return inputs
else:
# convert Tensor to dst_dtype
if hasattr(inputs, 'to') and \
hasattr(inputs, 'dtype') and \
(inputs.dtype == src_type or src_type is None):
return inputs.to(dst_type)
else:
return inputs
# we need to ensure that the type of inputs to be casted are the same
# as the argument `src_type`.
elif isinstance(inputs, abc.Mapping):
return type(inputs)({
k: cast_tensor_type(v, src_type=src_type, dst_type=dst_type)
for k, v in inputs.items()
})
elif isinstance(inputs, abc.Iterable):
return type(inputs)(
cast_tensor_type(item, src_type=src_type, dst_type=dst_type)
for item in inputs)
# TODO: Currently not supported
# elif isinstance(inputs, InstanceData):
# for key, value in inputs.items():
# inputs[key] = cast_tensor_type(
# value, src_type=src_type, dst_type=dst_type)
# return inputs
else:
return inputs
@contextmanager
def _ignore_torch_cuda_oom():
"""A context which ignores CUDA OOM exception from pytorch.
Code is modified from
<https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/memory.py> # noqa: E501
"""
try:
yield
except RuntimeError as e:
# NOTE: the string may change?
if 'CUDA out of memory. ' in str(e):
pass
else:
raise
class AvoidOOM:
"""Try to convert inputs to FP16 and CPU if got a PyTorch's CUDA Out of
Memory error. It will do the following steps:
1. First retry after calling `torch.cuda.empty_cache()`.
2. If that still fails, it will then retry by converting inputs
to FP16.
3. If that still fails trying to convert inputs to CPUs.
In this case, it expects the function to dispatch to
CPU implementation.
Args:
to_cpu (bool): Whether to convert outputs to CPU if get an OOM
error. This will slow down the code significantly.
Defaults to True.
test (bool): Skip `_ignore_torch_cuda_oom` operate that can use
lightweight data in unit test, only used in
test unit. Defaults to False.
Examples:
>>> from mmdet.utils.memory import AvoidOOM
>>> AvoidCUDAOOM = AvoidOOM()
>>> output = AvoidOOM.retry_if_cuda_oom(
>>> some_torch_function)(input1, input2)
>>> # To use as a decorator
>>> # from mmdet.utils import AvoidCUDAOOM
>>> @AvoidCUDAOOM.retry_if_cuda_oom
>>> def function(*args, **kwargs):
>>> return None
```
Note:
1. The output may be on CPU even if inputs are on GPU. Processing
on CPU will slow down the code significantly.
2. When converting inputs to CPU, it will only look at each argument
and check if it has `.device` and `.to` for conversion. Nested
structures of tensors are not supported.
3. Since the function might be called more than once, it has to be
stateless.
"""
def __init__(self, to_cpu=True, test=False):
self.to_cpu = to_cpu
self.test = test
def retry_if_cuda_oom(self, func):
"""Makes a function retry itself after encountering pytorch's CUDA OOM
error.
The implementation logic is referred to
https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/memory.py
Args:
func: a stateless callable that takes tensor-like objects
as arguments.
Returns:
func: a callable which retries `func` if OOM is encountered.
""" # noqa: W605
@wraps(func)
def wrapped(*args, **kwargs):
# raw function
if not self.test:
with _ignore_torch_cuda_oom():
return func(*args, **kwargs)
# Clear cache and retry
torch.cuda.empty_cache()
with _ignore_torch_cuda_oom():
return func(*args, **kwargs)
# get the type and device of first tensor
dtype, device = None, None
values = args + tuple(kwargs.values())
for value in values:
if isinstance(value, torch.Tensor):
dtype = value.dtype
device = value.device
break
if dtype is None or device is None:
raise ValueError('There is no tensor in the inputs, '
'cannot get dtype and device.')
# Convert to FP16
fp16_args = cast_tensor_type(args, dst_type=torch.half)
fp16_kwargs = cast_tensor_type(kwargs, dst_type=torch.half)
logger = get_root_logger()
logger.warning(f'Attempting to copy inputs of {str(func)} '
'to FP16 due to CUDA OOM')
# get input tensor type, the output type will same as
# the first parameter type.
with _ignore_torch_cuda_oom():
output = func(*fp16_args, **fp16_kwargs)
output = cast_tensor_type(
output, src_type=torch.half, dst_type=dtype)
if not self.test:
return output
logger.warning('Using FP16 still meet CUDA OOM')
# Try on CPU. This will slow down the code significantly,
# therefore print a notice.
if self.to_cpu:
logger.warning(f'Attempting to copy inputs of {str(func)} '
'to CPU due to CUDA OOM')
cpu_device = torch.empty(0).device
cpu_args = cast_tensor_type(args, dst_type=cpu_device)
cpu_kwargs = cast_tensor_type(kwargs, dst_type=cpu_device)
# convert outputs to GPU
with _ignore_torch_cuda_oom():
logger.warning(f'Convert outputs to GPU (device={device})')
output = func(*cpu_args, **cpu_kwargs)
output = cast_tensor_type(
output, src_type=cpu_device, dst_type=device)
return output
warnings.warn('Cannot convert output to GPU due to CUDA OOM, '
'the output is now on CPU, which might cause '
'errors if the output need to interact with GPU '
'data in subsequent operations')
logger.warning('Cannot convert output to GPU due to '
'CUDA OOM, the output is on CPU now.')
return func(*cpu_args, **cpu_kwargs)
else:
# may still get CUDA OOM error
return func(*args, **kwargs)
return wrapped
# To use AvoidOOM as a decorator
AvoidCUDAOOM = AvoidOOM()